Digital pseudomanifolds, digital weakmanifolds and Jordan-Brouwer separation theorem
暂无分享,去创建一个
[1] Max K. Agoston. Algebraic topology: A first course , 1976 .
[2] A. W. Roscoe,et al. Concepts of digital topology , 1992 .
[3] Rafael Ayala,et al. Determining the components of the complement of a digital (n-1)-manifold in Zn , 1996, DGCI.
[4] Mohammed Khachan,et al. Polyhedral Representation and Adjacency Graph in n-dimensional Digital Images , 2000, Comput. Vis. Image Underst..
[5] A. W. Roscoe,et al. Continuous analogs of axiomatized digital surfaces , 1984, Comput. Vis. Graph. Image Process..
[6] Azriel Rosenfeld,et al. Surfaces in Three-Dimensional Digital Images , 1981, Inf. Control..
[7] Gilles Bertrand,et al. Some Topological Properties of Surfaces in Z3 , 2004, Journal of Mathematical Imaging and Vision.
[8] Rémy Malgouyres. There is no Local Characterization of Separating and Thin Objects in Z³ , 1996, Theor. Comput. Sci..
[9] Azriel Rosenfeld,et al. Digital surfaces , 1991, CVGIP Graph. Model. Image Process..
[10] A W Tucker,et al. On Combinatorial Topology. , 1932, Proceedings of the National Academy of Sciences of the United States of America.
[11] Azriel Rosenfeld,et al. Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..
[12] J. Hudson. Piecewise linear topology , 1966 .
[13] Rafael Ayala,et al. A Digital Lighting Function for Strong 26-Surfaces , 1999, DGCI.
[14] Gilles Bertrand,et al. Simplicity surfaces: a new definition of surfaces in Z3 , 1998, Optics & Photonics.
[15] Gilles Bertrand,et al. Local property of strong surfaces , 1997, Optics & Photonics.