Digital pseudomanifolds, digital weakmanifolds and Jordan-Brouwer separation theorem

In this paper we introduce the new notion of n-pseudomanifold and n-weakmanifold in an (n+1)-digital image using (2(n+1),3(n+1)-1)-adjacency. For these classes, we prove the digital version of the Jordan-Brouwer separation theorem. To accomplish this objective, we construct a polyhedral representation of the (n+1)-digital image based on a cubical complex decomposition which enables us to translate some results from polyhedral topology into the digital space. Our main result extends the class of "thin" objects that are defined locally and verifying the Jordan-Brouwer separation theorem.

[1]  Max K. Agoston Algebraic topology: A first course , 1976 .

[2]  A. W. Roscoe,et al.  Concepts of digital topology , 1992 .

[3]  Rafael Ayala,et al.  Determining the components of the complement of a digital (n-1)-manifold in Zn , 1996, DGCI.

[4]  Mohammed Khachan,et al.  Polyhedral Representation and Adjacency Graph in n-dimensional Digital Images , 2000, Comput. Vis. Image Underst..

[5]  A. W. Roscoe,et al.  Continuous analogs of axiomatized digital surfaces , 1984, Comput. Vis. Graph. Image Process..

[6]  Azriel Rosenfeld,et al.  Surfaces in Three-Dimensional Digital Images , 1981, Inf. Control..

[7]  Gilles Bertrand,et al.  Some Topological Properties of Surfaces in Z3 , 2004, Journal of Mathematical Imaging and Vision.

[8]  Rémy Malgouyres There is no Local Characterization of Separating and Thin Objects in Z³ , 1996, Theor. Comput. Sci..

[9]  Azriel Rosenfeld,et al.  Digital surfaces , 1991, CVGIP Graph. Model. Image Process..

[10]  A W Tucker,et al.  On Combinatorial Topology. , 1932, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Azriel Rosenfeld,et al.  Digital topology: Introduction and survey , 1989, Comput. Vis. Graph. Image Process..

[12]  J. Hudson Piecewise linear topology , 1966 .

[13]  Rafael Ayala,et al.  A Digital Lighting Function for Strong 26-Surfaces , 1999, DGCI.

[14]  Gilles Bertrand,et al.  Simplicity surfaces: a new definition of surfaces in Z3 , 1998, Optics & Photonics.

[15]  Gilles Bertrand,et al.  Local property of strong surfaces , 1997, Optics & Photonics.