A constructive algorithm for the Lovász Local Lemma on permutations
暂无分享,去创建一个
[1] Stephen A. Cook,et al. A Taxonomy of Problems with Fast Parallel Algorithms , 1985, Inf. Control..
[2] Michael Luby,et al. A simple parallel algorithm for the maximal independent set problem , 1985, STOC '85.
[3] Pooya Hatami,et al. A lower bound for the length of a partial transversal in a Latin square , 2008, J. Comb. Theory, Ser. A.
[4] S. Stein. TRANSVERSALS OF LATIN SQUARES AND THEIR GENERALIZATIONS , 1975 .
[5] Paul Erdös,et al. Lopsided Lovász Local Lemma and Latin transversals , 1991, Discret. Appl. Math..
[6] Aldo Procacci,et al. Improved bounds on coloring of graphs , 2010, Eur. J. Comb..
[7] Noga Alon,et al. Covering with Latin Transversals , 1995, Discret. Appl. Math..
[8] Carsten Thomassen,et al. Path and cycle sub-ramsey numbers and an edge-colouring conjecture , 1986, Discret. Math..
[9] Aldo Procacci,et al. An Improvement of the Lovász Local Lemma via Cluster Expansion , 2009, Combinatorics, Probability and Computing.
[10] Noga Alon,et al. A Fast and Simple Randomized Parallel Algorithm for the Maximal Independent Set Problem , 1985, J. Algorithms.
[11] Ron Aharoni,et al. Independent systems of representatives in weighted graphs , 2007, Comb..
[12] Alan M. Frieze,et al. On Rainbow Trees and Cycles , 2008, Electron. J. Comb..
[13] Jan Vondrák,et al. An Algorithmic Proof of the Lopsided Lovász Local Lemma ( simplified and condensed into lecture notes ) , 2015 .
[14] Maria Axenovich,et al. On the Strong Chromatic Number of Graphs , 2006, SIAM J. Discret. Math..
[15] P. Erdös,et al. Has every Latin square of order n a partial Latin transversal of size n -1? , 1988 .
[16] Cheng Yeaw Ku,et al. A random construction for permutation codes and the covering radius , 2006, Des. Codes Cryptogr..
[17] Wayne Goddard,et al. Acyclic colorings of planar graphs , 1991, Discret. Math..
[18] Aravind Srinivasan,et al. New Constructive Aspects of the Lovasz Local Lemma , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.
[19] Wesley Pegden,et al. An Extension of the Moser-Tardos Algorithmic Local Lemma , 2011, SIAM J. Discret. Math..
[20] Sherman Stein,et al. Transversals in Rectangular Arrays , 2010, Am. Math. Mon..
[21] Aline Parreau,et al. Acyclic edge-coloring using entropy compression , 2012, Eur. J. Comb..
[22] Andrzej Dudek,et al. Rainbow Hamilton Cycles in Uniform Hypergraphs , 2012, Electron. J. Comb..
[23] Penny E. Haxell. On the Strong Chromatic Number , 2004, Comb. Probab. Comput..
[24] A. Scott,et al. The Repulsive Lattice Gas, the Independent-Set Polynomial, and the Lovász Local Lemma , 2003, cond-mat/0309352.
[25] Penny E. Haxell. An improved bound for the strong chromatic number , 2008, J. Graph Theory.
[26] Bruce A. Reed,et al. Further algorithmic aspects of the local lemma , 1998, STOC '98.
[27] Dimitris Achlioptas,et al. Random Walks That Find Perfect Objects and the Lovasz Local Lemma , 2014, 2014 IEEE 55th Annual Symposium on Foundations of Computer Science.
[28] Mario Szegedy,et al. Moser and tardos meet Lovász , 2011, STOC.
[29] Vladimir Kolmogorov,et al. Commutativity in the Random Walk formulation of the Lovasz Local Lemma , 2015, ArXiv.
[30] J. Dénes,et al. Latin squares and their applications , 1974 .
[31] Noga Alon,et al. Probabilistic proofs of existence of rare events , 1989 .
[32] C. R. Subramanian,et al. Improved bounds on acyclic edge colouring , 2007, Discret. Math..
[33] Linyuan Lu,et al. Quest for Negative Dependency Graphs , 2012 .
[34] Noga Alon,et al. Acyclic edge colorings of graphs , 2001, J. Graph Theory.
[35] Bruce A. Reed,et al. Acyclic Coloring of Graphs , 1991, Random Struct. Algorithms.
[36] Uzi Vishkin,et al. Almost Fully-parallel Parentheses Matching , 1995, Discret. Appl. Math..
[37] Austin Tyler Mohr. Applications of the Lopsided Lovász Local Lemma Regarding Hypergraphs , 2013 .
[38] Michael R. Fellows. Transversals of Vertex Partitions in Graphs , 1990, SIAM J. Discret. Math..
[39] James B. Shearer,et al. On a problem of spencer , 1985, Comb..
[40] Linyuan Lu,et al. Using Lovász Local Lemma in the Space of Random Injections , 2007, Electron. J. Comb..
[41] Gábor Tardos,et al. A constructive proof of the general lovász local lemma , 2009, JACM.
[42] Alan M. Frieze,et al. Multicoloured Hamilton Cycles , 1995, Electron. J. Comb..
[43] Yoshiharu Kohayakawa,et al. Properly coloured copies and rainbow copies of large graphs with small maximum degree , 2010, Random Struct. Algorithms.