Towards experimental quantum-field tomography with ultracold atoms

The experimental realization of large-scale many-body systems in atomic-optical architectures has seen immense progress in recent years, rendering full tomography tools for state identification inefficient, especially for continuous systems. To work with these emerging physical platforms, new technologies for state identification are required. Here we present first steps towards efficient experimental quantum-field tomography. Our procedure is based on the continuous analogues of matrix-product states, ubiquitous in condensed-matter theory. These states naturally incorporate the locality present in realistic physical settings and are thus prime candidates for describing the physics of locally interacting quantum fields. To experimentally demonstrate the power of our procedure, we quench a one-dimensional Bose gas by a transversal split and use our method for a partial quantum-field reconstruction of the far-from-equilibrium states of this system. We expect our technique to play an important role in future studies of continuous quantum many-body systems.

[1]  F. Verstraete,et al.  Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems , 2008, 0907.2796.

[2]  Z. Hradil Quantum-state estimation , 1996, quant-ph/9609012.

[3]  J. Schmiedmayer,et al.  The dynamics and prethermalization of one-dimensional quantum systems probed through the full distributions of quantum noise , 2011, 1104.5631.

[4]  Astro Ltd Quantum information processing and metrology with trapped ions , 2011 .

[5]  J. Schmiedmayer,et al.  Local relaxation and light-cone-like propagation of correlations in a trapped one-dimensional Bose gas , 2013, 1312.7568.

[6]  J Eisert,et al.  Exact relaxation in a class of nonequilibrium quantum lattice systems. , 2008, Physical review letters.

[7]  J. Schmiedmayer,et al.  Non-equilibrium coherence dynamics in one-dimensional Bose gases. , 2007, Nature.

[8]  J. Schmiedmayer,et al.  Chiral prethermalization in supersonically split condensates. , 2014, Physical review letters.

[9]  J. Eisert,et al.  Efficient and feasible state tomography of quantum many-body systems , 2012, 1204.5735.

[10]  Jakob Reichel,et al.  Atom chips. , 2005, Scientific American.

[11]  J. Schmiedmayer,et al.  Local emergence of thermal correlations in an isolated quantum many-body system , 2013, Nature Physics.

[12]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[13]  D. Gross,et al.  Efficient quantum state tomography. , 2010, Nature communications.

[14]  R. F.,et al.  Mathematical Statistics , 1944, Nature.

[15]  Daniel Nigg,et al.  Experimental Repetitive Quantum Error Correction , 2011, Science.

[16]  J Eisert,et al.  Wick's theorem for matrix product states. , 2013, Physical review letters.

[17]  Immanuel Bloch,et al.  Light-cone-like spreading of correlations in a quantum many-body system , 2011, Nature.

[18]  J. Eisert,et al.  Quantum many-body systems out of equilibrium , 2014, Nature Physics.

[19]  J. Eisert,et al.  Quantum field tomography , 2014, 1406.3631.

[20]  M B Plenio,et al.  Scalable reconstruction of density matrices. , 2012, Physical review letters.

[21]  J. Cirac,et al.  Goals and opportunities in quantum simulation , 2012, Nature Physics.

[22]  Frank Verstraete,et al.  Matrix product state representations , 2006, Quantum Inf. Comput..

[23]  Igor E. Mazets,et al.  Experimental observation of a generalized Gibbs ensemble , 2014, Science.

[24]  J. Eisert,et al.  Holographic quantum states. , 2010, Physical review letters.

[25]  T. Jacqmin,et al.  Sub-Poissonian fluctuations in a 1D Bose gas: from the quantum quasicondensate to the strongly interacting regime. , 2011, Physical review letters.

[26]  J. Eisert,et al.  Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas , 2011, Nature Physics.

[27]  T. Schumm,et al.  Matter-wave interferometry in a double well on an atom chip , 2005 .

[28]  J. Cardy,et al.  Time dependence of correlation functions following a quantum quench. , 2006, Physical review letters.

[29]  Zhihao Lan,et al.  Quantum simulations with ultracold quantum gases , 2012 .

[30]  Stephen Becker,et al.  Quantum state tomography via compressed sensing. , 2009, Physical review letters.

[31]  J. Eisert,et al.  Area laws for the entanglement entropy - a review , 2008, 0808.3773.

[32]  I. Mazets,et al.  Relaxation and Prethermalization in an Isolated Quantum System , 2011, Science.

[33]  V. Vuletić,et al.  Atom Chips: REICHEL:ATOM CHIPS O-BK , 2011 .

[34]  J. Schmiedmayer,et al.  Prethermalization revealed by the relaxation dynamics of full distribution functions , 2012, 1212.4645.

[35]  Eric Jones,et al.  SciPy: Open Source Scientific Tools for Python , 2001 .

[36]  Fernando Quijandría,et al.  Continuous matrix product states for quantum fields , 2015 .

[37]  Michael M. Wolf,et al.  On entropy growth and the hardness of simulating time evolution , 2008, 0801.2078.

[38]  G. D’Ariano,et al.  Quantum Tomography , 2003, quant-ph/0302028.

[39]  U. Schollwoeck The density-matrix renormalization group in the age of matrix product states , 2010, 1008.3477.

[40]  J. Ignacio Cirac,et al.  Calculus of continuous matrix product states , 2013 .

[41]  Ruediger Schack,et al.  Unknown Quantum States and Operations, a Bayesian View , 2004, quant-ph/0404156.

[42]  Steven T. Flammia,et al.  Quantum tomography via compressed sensing: error bounds, sample complexity and efficient estimators , 2012, 1205.2300.