Solar cell efficiency tables (version 29)

Solar Cell Efficiency Tables (Version 29) Martin A. Green1*,y, Keith Emery, David L. King, Yoshihiro Hishikawa and Wilhelm Warta ARC Photovoltaics Centre of Excellence, University of New South Wales, Sydney 2052, Australia National Renewable Energy Laboratory, 1617 Cole Boulevard, Golden, CO 80401, USA Sandia National Laboratories, 1515 Eubank Blvd. SE, Albuquerque, NM 87123-0752, USA National Institute of Advanced Industrial Science and Technology (AIST), Research Center for Photovoltaics (RCPV), Central 2, Umezono 1-1-1, Tsukuba, Ibaraki, Japan Fraunhofer-Institute for Solar Energy Systems, Department for Solar Cells–Materials and Technology, Heidenhofstr. 2, D-79110 Freiburg, Germany

[1]  C. J. Keavney,et al.  Emitter structures in MOCVD InP solar cells , 1990, IEEE Conference on Photovoltaic Specialists.

[2]  Kenji Yamamoto,et al.  High efficiency thin film silicon hybrid solar cell module on 1 m/sup 2/-class large area substrate , 2003, 3rd World Conference onPhotovoltaic Energy Conversion, 2003. Proceedings of.

[3]  J.M. Gee,et al.  Concentrator efficiencies of 29.2% for a GaAs cell and 24.8% for a mounted cell-lens assembly , 1988, Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference.

[4]  H. Field,et al.  18.2% (AM1.5) efficient GaAs solar cell on optical-grade polycrystalline Ge substrate , 1996, Conference Record of the Twenty Fifth IEEE Photovoltaic Specialists Conference - 1996.

[5]  D. L. King,et al.  World's first 15%-efficient multicrystalline silicon modules , 1994, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC).

[6]  J. van Deelen,et al.  HIGH EFFICIENCY THIN FILM GaAs SOLAR CELLS WITH IMPROVED RADIATION HARDNESS , 2005 .

[7]  S. Guha,et al.  Recent progress in amorphous silicon alloy leading to 13% stable cell efficiency , 1997, Conference Record of the Twenty Sixth IEEE Photovoltaic Specialists Conference - 1997.

[8]  Rommel Noufi,et al.  SHORT COMMUNICATION: ACCELERATED PUBLICATION: Diode characteristics in state‐of‐the‐art ZnO/CdS/Cu(In1−xGax)Se2 solar cells , 2005 .

[9]  Rommel Noufi,et al.  Progress toward 20% efficiency in Cu(In,Ga)Se2 polycrystalline thin‐film solar cells , 1999 .

[10]  Gerald Siefer,et al.  DEVELOPMENT OF HIGH-EFFICIENCY MECHANICALLY STACKED GaInP/GaInAs-GaSb TRIPLE- JUNCTION CONCENTRATOR SOLAR CELLS , 2001 .

[11]  V. S. Sundaram,et al.  Over 35% efficient GaAs/GaSb stacked concentrator cell assemblies for terrestrial applications , 1990, IEEE Conference on Photovoltaic Specialists.

[12]  B. Raabe,et al.  18.1% Efficiency for a Large Area, Multi-Crystalline Silicon Solar Cell , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[13]  T. Moriarty,et al.  Potential of amorphous and microcrystalline silicon solar cells , 2004 .

[14]  Liyuan Han,et al.  High Efficiency of Dye-Sensitized Solar Cell and Module , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[15]  Paul A. Basore,et al.  Pilot production of thin-film crystalline silicon on glass modules , 2002, Conference Record of the Twenty-Ninth IEEE Photovoltaic Specialists Conference, 2002..

[16]  Martin A. Green,et al.  Large area, concentrator buried contact solar cells , 1995 .

[17]  M. Green,et al.  20 000 PERL silicon cells for the ‘1996 World Solar Challenge’ solar car race , 1997 .

[18]  Subhendu Guha,et al.  Progress in triple-junction amorphous silicon-based alloy solar cells and modules using hydrogen dilution , 1994, Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC).

[19]  M. Green,et al.  19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells , 1998 .

[20]  D. L. King,et al.  Solar cell efficiency tables (version 28) , 2006 .

[21]  Ralf B. Bergmann,et al.  Advances in monocrystalline Si thin film solar cells by layer transfer , 2002 .

[22]  Martin A. Green,et al.  Solar cell efficiency tables (version 17) , 2001 .

[23]  Kenji Yamamoto,et al.  Thin-film poly-Si solar cells on glass substrate fabricated at low temperature , 1999 .

[24]  Carl R. Osterwald,et al.  Advanced high-efficiency concentrator tandem solar cells , 1991, The Conference Record of the Twenty-Second IEEE Photovoltaic Specialists Conference - 1991.

[25]  D. L. King,et al.  Solar cell efficiency tables (version 22) , 1996, Renewable Energy.

[26]  H. Sakata,et al.  Sanyo's Challenges to the Development of High-efficiency HIT Solar Cells and the Expansion of HIT Business , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[27]  K. Emery,et al.  Proposed reference irradiance spectra for solar energy systems testing , 2002 .

[28]  Kim W. Mitchell,et al.  Single and tandem junction CuInSe/sub 2/ cell and module technology , 1988, Conference Record of the Twentieth IEEE Photovoltaic Specialists Conference.

[29]  H.-J. Lee,et al.  Improvement of Efficiency of Polymer Solar Cells with Soluble Fullerene Derivatives , 2006, 2006 IEEE 4th World Conference on Photovoltaic Energy Conference.

[30]  Kenji Yamamoto,et al.  Thin Film Poly-Si Solar Cell on Glass Substrate Fabricated at Low Temperature , 1998 .

[31]  S. Glunz,et al.  SHORT COMMUNICATION: ACCELERATED PUBLICATION: Multicrystalline silicon solar cells exceeding 20% efficiency , 2004 .

[32]  M. Green,et al.  24·5% Efficiency silicon PERT cells on MCZ substrates and 24·7% efficiency PERL cells on FZ substrates , 1999 .