Frontiers in metal sorption/precipitation mechanisms on soil mineral surfaces

Spectroscopic studies provide evidence that inorganic contaminants may be incorporated into precipitates at the surface of soil and sediment minerals.Surface precipitates may form via several mechanisms that are dependent on the unique characteristics of the interfacial region between solid and solution.In general, surface complexation models (SCMs)capture most of the salient features of the interfacial region.However,current SCMs fail to capture the dynamics of mineral surfaces,thus limitingtheir ability to predict the composition and structure of potential surface precipitates.This review outlines the current implementation of surface precipitation models,spectroscopic studies that highlight the need to develop more comprehensive SCMs,and future research directions that will help .ll existing knowledge gaps.Successful modeling approaches to describe surface precipitation phenomena are a necessary component for the evaluation of long-term inorganic contaminant transport in soil and sediment systems.

[1]  Donald L. Sparks,et al.  The kinetics of mixed Ni-Al hydroxide formation on clay and aluminum oxide minerals: a time-resolved XAFS study , 1998 .

[2]  J. Hazemann,et al.  QUANTITATIVE ZN SPECIATION IN SMELTER-CONTAMINATED SOILS BY EXAFS SPECTROSCOPY , 2000 .

[3]  P. D. Bruyn,et al.  Hydrolysis-precipitation studies of iron solutions. I. Model for hydrolysis and precipitation from Fe(III) nitrate solutions , 1976 .

[4]  P. Gassman,et al.  Cobalt, Cadmium, and Lead Sorption to Hydrous Iron Oxide: Residence Time Effect , 1994 .

[5]  Thomas W. Healy,et al.  Adsorption of hydrolyzable metal ions at the oxide—water interface. II. Charge reversal of SiO2 and TiO2 colloids by adsorbed Co(II), La(III), and Th(IV) as model systems , 1972 .

[6]  C. Fuller,et al.  A model for trace metal sorption processes at the calcite surface: Adsorption of Cd2+ and subsequent solid solution formation , 1987 .

[7]  G. Sposito Distinguishing Adsorption from Surface Precipitation , 1987 .

[8]  W. Schneider Hydrolysis of Iron(III)…Chaotic Olation Versus Nucleation , 1984 .

[9]  Brown,et al.  Surface Precipitation of Co(II)(aq) on Al2O3 , 1997, Journal of colloid and interface science.

[10]  L. Charlet,et al.  From adsorption to precipitation: Sorption of Mn2+ on FeCO3(s) , 1989 .

[11]  G. Waychunas,et al.  Rock−Water Interactions Controlling Zinc, Cadmium, and Lead Concentrations in Surface Waters and Sediments, U.S. Tri-State Mining District. 1. Molecular Identification Using X-ray Absorption Spectroscopy , 1998 .

[12]  S. Carroll,et al.  Metal Speciation and Bioavailability in Contaminated Estuary Sediments, Alameda Naval Air Station, California , 2000 .

[13]  K. Scheckel,et al.  Kinetics of the Formation and Dissolution of Ni Precipitates in a Gibbsite/Amorphous Silica Mixture. , 2000, Journal of colloid and interface science.

[14]  C. Baes,et al.  The hydrolysis of cations , 1986 .

[15]  G. A. Parks,et al.  X-ray absorption spectroscopy of cobalt(II) multinuclear surface complexes and surface precipitates on kaolinite , 1994 .

[16]  L. Charlet,et al.  X-ray absorption spectroscopic study of the sorption of Cr(III) at the oxide-water interface: II. Adsorption, coprecipitation, and surface precipitation on hydrous ferric oxide , 1992 .

[17]  K. Hayes,et al.  Geochemical processes at mineral surfaces , 1987 .

[18]  K. Farley,et al.  Changes in Transition and Heavy Metal Partitioning during Hydrous Iron Oxide Aging , 1997 .

[19]  G. A. Parks,et al.  X-ray absorption spectroscopy of Co(II) sorption complexes on quartz (α-SiO2) and rutile (TiO2) , 1996 .

[20]  G. A. Parks,et al.  Quantitative speciation of lead in selected mine tailings from Leadville, CO , 1999 .

[21]  John W. Morse,et al.  Ostwald Processes and Mineral Paragenesis in Sediments , 1988, American Journal of Science.

[22]  A. Scheidegger,et al.  Spectroscopic Evidence for the Formation of Mixed-Cation Hydroxide Phases upon Metal Sorption on Clays and Aluminum Oxides , 1997, Journal of colloid and interface science.

[23]  D. Sparks,et al.  Mineral-water interfacial reactions : kinetics and mechanisms , 1999 .

[24]  D. Sparks,et al.  Kinetics of mixed Ni-Al precipitate formation on a soil clay fraction , 1999 .

[25]  J. J. Morgan,et al.  Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters , 1970 .

[26]  J. Hazemann,et al.  Structure of the αFexAl1:xOOH solid solution , 1992 .

[27]  Andreas C Scheinost,et al.  Formation of Layered Single- and Double-Metal Hydroxide Precipitates at the Mineral/Water Interface: A Multiple-Scattering XAFS Analysis. , 2000, Journal of colloid and interface science.

[28]  J. A. Davis,et al.  Surface complexation modeling in aqueous geochemistry , 1990 .

[29]  F. Morel,et al.  Sorption of cadmium on hydrous ferric oxide at high sorbate/sorbent ratios: Equilibrium, kinetics, and modeling , 1986 .

[30]  D. Sparks,et al.  The Link between Clay Mineral Weathering and the Stabilization of Ni Surface Precipitates , 1999 .

[31]  M. McBride,et al.  The chemistry of adsorbed Cu(II) and Mn(II) in aqueous titanium dioxide suspensions , 1986 .

[32]  Schlegel,et al.  Evidence for the Formation of Trioctahedral Clay upon Sorption of Co(2+) on Quartz. , 1999, Journal of colloid and interface science.

[33]  M. McBride,et al.  Aging of coprecipitated Cu in alumina: changes in structural location, chemical form, and solubility , 2000 .

[34]  D. Sparks Environmental Soil Chemistry , 1995 .

[35]  J. Besse,et al.  Anionic Clays: Trends in Pillaring Chemistry , 1992 .

[36]  H. Bohn,et al.  Solid activity coefficients of soil components , 1986 .

[37]  L. Charlet,et al.  Evidence for the neoformation of clays upon sorption of Co(II) and Ni(II) on silicates , 1994 .

[38]  P. Brady Physics and chemistry of mineral surfaces , 1996 .

[39]  C. M. Flynn Hydrolysis of inorganic iron(III) salts , 1984 .

[40]  J. Walther RELATION BETWEEN RATES OF ALUMINOSILICATE MINERAL DISSOLUTION, PH, TEMPERATURE, AND SURFACE CHARGE , 1996 .

[41]  G. A. Parks,et al.  Formation and Release of Cobalt(II) Sorption and Precipitation Products in Aging Kaolinite-Water Slurries. , 2000, Journal of colloid and interface science.

[42]  J. A. Ryan,et al.  In situ lead immobilization by apatite , 1993 .

[43]  L. Katz,et al.  Surface Complexation Modeling: II. Strategy for Modeling Polymer and Precipitation Reactions at High Surface Coverage , 1995 .

[44]  G. A. Parks,et al.  Evidence for multinuclear metal-ion complexes at solid/water interfaces from X-ray absorption spectroscopy , 1990, Nature.

[45]  M. McBride,et al.  Interactions at the soil colloid-soil solution interface. , 1991 .

[46]  W. Stumm Chemistry of the solid-water interface , 1992 .

[47]  M. McBride Processes of Heavy and Transition Metal Sorption by Soil Minerals , 1991 .

[48]  D. Sparks 7 – KINETICS OF SOIL CHEMICAL PROCESSES , 1995 .

[49]  F. Morel,et al.  A surface precipitation model for the sorption of cations on metal oxides , 1985 .

[50]  Garrison Sposito,et al.  The surface chemistry of soils , 1984 .

[51]  M. Hochella,et al.  Manganese (II) oxidation at mineral surfaces: A microscopic and spectroscopic study , 1994 .

[52]  J. Duplay,et al.  A method of estimateng the Gibbs free energies of formation of hydrated and dehydrated clay minerals , 1992 .

[53]  D. Sparks,et al.  The role of Al in the formation of secondary Ni precipitates on pyrophyllite, gibbsite, talc, and amorphous silica: a DRS study , 1999 .

[54]  P. Bertsch,et al.  Influence of sorbate-sorbent interactions on the crystallization kinetics of nickel- and lead-ferrihydrite coprecipitates , 1999 .

[55]  C. Fuller,et al.  Processes and kinetics of Cd2+ sorption by a calcareous aquifer sand , 1987 .

[56]  D. Sparks,et al.  Stability of layered Ni hydroxide surface precipitates—a dissolution kinetics study , 2000 .

[57]  J. W. Miller,et al.  The Adsorption of o-Phosphate on Alumina: A Solid Solution Model1 , 1986 .

[58]  R. Comans Adsorption, desorption and isotopic exchange of cadmium on illite: evidence for complete reversibility , 1987 .