Forbidden subgraph characterization of bipartite unit probe interval graphs

A graph is a probe interval graph (PIG) if its vertices can be partitioned into probes and nonprobes with an interval assigned to each vertex so that vertices are adjacent if and only if their corresponding intervals intersect and at least one of the vertices is a probe. When all intervals have the same length (or equivalently, no interval contains another properly) the graph is a unit probe interval graph. We characterize, via a list of minimal forbidden induced subgraphs, and no a priori partition of vertices into probes and nonprobes, the class of bipartite unit probe interval graphs and present a linear time recognition algorithm for them which is based on this characterization.

[1]  Fred R. McMorris,et al.  On Probe Interval Graphs , 1998, Discret. Appl. Math..

[2]  Garth Isaak,et al.  Linear Time Recognition Algorithms and Structure Theorems for Bipartite Tolerance Graphs and Bipartite Probe Interval Graphs , 2010, Discret. Math. Theor. Comput. Sci..

[3]  J. R. Lundgren,et al.  Bipartite Probe Interval Graphs, Interval Point Bigraphs, and Circular ArcGraphs , 2006 .

[4]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[5]  J. R. Lundgren,et al.  Interval k-graphs , 2002 .

[6]  Gerard J. Chang,et al.  The PIGs Full Monty - A Floor Show of Minimal Separators , 2005, STACS.

[7]  R. Möhring Algorithmic graph theory and perfect graphs , 1986 .

[8]  J. Richard Lundgren,et al.  Bipartite probe interval graphs, circular arc graphs, and interval point bigraphs , 2006, Australas. J Comb..

[9]  Natasa Przulj,et al.  2-Tree probe interval graphs have a large obstruction set , 2005, Discret. Appl. Math..

[10]  James A. McHugh,et al.  Algorithmic Graph Theory , 1986 .

[11]  Li Sheng,et al.  A characterization of cycle-free unit probe interval graphs , 2009, Discret. Appl. Math..

[12]  Jeremy P. Spinrad,et al.  Construction of probe interval models , 2002, SODA '02.

[14]  Peisen Zhang,et al.  An algorithm based on graph theory for the assembly of contigs in physical mapping of DNA , 1994, Comput. Appl. Biosci..

[15]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[16]  Jeremy P. Spinrad,et al.  A polynomial time recognition algorithm for probe interval graphs , 2001, SODA '01.