Geometrically uniform codes

A signal space code C is defined as geometrically uniform if, for any two code sequences in C, there exists an isometry that maps one sequence into the other while leaving the code C invariant. Geometrical uniformity, a strong kind of symmetry, implies such properties as a) the distance profiles from code sequences in C to all other code sequences are all the same, and b) all Voronoi regions of code sequences in C have the same shape. It is stronger than Ungerboeck Zehavi-Wolf symmetry or Calderbank-Sloane regularity. Nonetheless, most known good classes of signal space codes are shown to be generalized coset codes, and therefore geometrically uniform, including (a) lattice-type trellis codes based on lattice partitions Lambda / Lambda ' such that Z/sup N// Lambda / Lambda '/4Z/sup N/ is a lattice partition chain, and (b) phase-shift-keying (PSK)-type trellis codes based on up to four-way partitions of a 2/sup n/-PSK signal set. >

[1]  D. Slepian Group codes for the Gaussian channel , 1968 .

[2]  Hans-Andrea Loeliger,et al.  Signal sets matched to groups , 1991, IEEE Trans. Inf. Theory.

[3]  G. David Forney,et al.  Coset codes-II: Binary lattices and related codes , 1988, IEEE Trans. Inf. Theory.

[4]  Lee-Fang Wei Rotationally Invariant Convolutional Channel Coding with Expanded Signal Space-Part II: Nonlinear Codes , 1984, IEEE J. Sel. Areas Commun..

[5]  D. Slepian A class of binary signaling alphabets , 1956 .

[6]  Ezio Biglieri,et al.  On the existence of group codes for the Gaussian channel , 1972, IEEE Trans. Inf. Theory.

[7]  Marco Ajmone Marsan,et al.  Combined coding and modulation: Theory and applications , 1988, IEEE Trans. Inf. Theory.

[8]  N. J. A. Sloane,et al.  New trellis codes based on lattices and cosets , 1987, IEEE Trans. Inf. Theory.

[9]  G. D. Farney,et al.  State Spaces, Trellis Diagrams And Minimal Encoders For Linear Codes Over Grcups , 1991, Proceedings. 1991 IEEE International Symposium on Information Theory.

[10]  David S. Slepian,et al.  A note off two binary signaling alphabets , 1956, IRE Trans. Inf. Theory.

[11]  D. Slepian Permutation Modulation , 1965, Encyclopedia of Wireless Networks.

[12]  Lee-Fang Wei,et al.  Trellis-coded modulation with multidimensional constellations , 1987, IEEE Trans. Inf. Theory.

[13]  Jr. G. Forney,et al.  Coset Codes-Part 11: Binary Lattices and Related Codes , 1988 .

[14]  G. David Forney Trellis shaping , 1992, IEEE Trans. Inf. Theory.

[15]  L.-H. Zetterberg A class of codes for polyphase signals on a bandlimited Gaussian channel , 1965, IEEE Trans. Inf. Theory.

[16]  David S. Slepian On neighbor distances and symmetry in group codes (Corresp.) , 1971, IEEE Trans. Inf. Theory.

[17]  Ezio Biglieri,et al.  Multidimensional modulation and coding for band-limited digital channels , 1988, IEEE Trans. Inf. Theory.

[18]  A. Robert Calderbank,et al.  A new description of trellis codes , 1984, IEEE Trans. Inf. Theory.

[19]  G. David Forney,et al.  Coset codes-I: Introduction and geometrical classification , 1988, IEEE Trans. Inf. Theory.

[20]  Jack K. Wolf,et al.  On the performance evaluation of trellis codes , 1987, IEEE Trans. Inf. Theory.

[21]  M. D. Trott,et al.  An Algebraic Framework For Rotational Invariance Of Trellis Codes , 1991, Proceedings. 1991 IEEE International Symposium on Information Theory.

[22]  David S. Slepian,et al.  Group codes for the Gaussian channel (Abstr.) , 1968, IEEE Trans. Inf. Theory.

[23]  E. Biglieri Uniform distance and error probability properties of TCM schemes , 1989, IEEE International Conference on Communications, World Prosperity Through Communications,.

[24]  Ingemar Ingemarsson Commutative group codes for the Gaussian channel , 1973, IEEE Trans. Inf. Theory.

[25]  Gottfried Ungerboeck,et al.  Channel coding with multilevel/phase signals , 1982, IEEE Trans. Inf. Theory.

[26]  Ingemar Ingemarsson,et al.  Group Codes for the Gaussian Channel , 1989 .

[27]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.