Earth Observations from DSCOVR/EPIC Instrument.

The NOAA Deep Space Climate Observatory (DSCOVR) spacecraft was launched on February 11, 2015, and in June 2015 achieved its orbit at the first Lagrange point or L1, 1.5 million km from Earth towards the Sun. There are two NASA Earth observing instruments onboard: the Earth Polychromatic Imaging Camera (EPIC) and the National Institute of Standards and Technology Advanced Radiometer (NISTAR). The purpose of this paper is to describe various capabilities of the DSCOVR/EPIC instrument. EPIC views the entire sunlit Earth from sunrise to sunset at the backscattering direction (scattering angles between 168.5° and 175.5°) with 10 narrowband filters: 317, 325, 340, 388, 443, 552, 680, 688, 764 and 779 nm. We discuss a number of pre-processingsteps necessary for EPIC calibration including the geolocation algorithm and the radiometric calibration for each wavelength channel in terms of EPIC counts/second for conversion to reflectance units. The principal EPIC products are total ozone O3amount, scene reflectivity, erythemal irradiance, UV aerosol properties, sulfur dioxide SO2 for volcanic eruptions, surface spectral reflectance, vegetation properties, and cloud products including cloud height. Finally, we describe the observation of horizontally oriented ice crystals in clouds and the unexpected use of the O2 B-band absorption for vegetation properties.

[1]  P. Bhartia,et al.  Derivation of aerosol properties from satellite measurements of backscattered ultraviolet radiation , 1998 .

[2]  Kenneth R. Knapp,et al.  Quantification of aerosol signal in GOES 8 visible imagery over the United States , 2002 .

[3]  Jay R. Herman,et al.  Comparison of ozone retrievals from the Pandora spectrometer system and Dobson spectrophotometer in Boulder, Colorado , 2015 .

[4]  Vincent Noel,et al.  Study of Ice Crystal Orientation in Cirrus Clouds Based on Satellite Polarized Radiance Measurements , 2004 .

[5]  William I. Rose,et al.  Retrieval of sizes and total masses of particles in volcanic clouds using AVHRR bands 4 and 5 , 1994 .

[6]  K. Oleson,et al.  A dynamic global vegetation model for use with climate models: concepts and description of simulated vegetation dynamics , 2003 .

[7]  Yuekui Yang,et al.  Study of the Effect of Temporal Sampling Frequency on DSCOVR Observations Using the GEOS-5 Nature Run Results (Part I): Earth's Radiation Budget , 2016, Remote. Sens..

[8]  Vincent Noel,et al.  A global view of horizontally oriented crystals in ice clouds from Cloud‐Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) , 2010 .

[9]  Philip Lewis,et al.  Hyperspectral remote sensing of foliar nitrogen content , 2012, Proceedings of the National Academy of Sciences.

[10]  C. Tucker Red and photographic infrared linear combinations for monitoring vegetation , 1979 .

[11]  Yi Wang,et al.  Passive remote sensing of altitude and optical depth of dust plumes using the oxygen A and B bands: First results from EPIC/DSCOVR at Lagrange‐1 point , 2017, Geophysical research letters.

[12]  A. Krueger,et al.  Stratospheric Loading of Sulfur From Explosive Volcanic Eruptions , 1997, The Journal of Geology.

[13]  M. Rautiainen,et al.  Estimation of leaf area index and its sunlit portion from DSCOVR EPIC data: Theoretical basis. , 2017, Remote sensing of environment.

[14]  A. Krueger,et al.  The contribution of explosive volcanism to global atmospheric sulphur dioxide concentrations , 1993, Nature.

[15]  A. Marshak,et al.  Calculation of canopy bidirectional reflectance using the Monte Carlo method , 1988 .

[16]  Ranga B. Myneni,et al.  Amazon Forests' Response to Droughts: A Perspective from the MAIAC Product , 2016, Remote. Sens..

[17]  Akira Iwasaki,et al.  Deriving the Absolute Reflectance of Lunar Surface Using SELENE (Kaguya) Multiband Imager Data , 2010 .

[18]  P. Bhartia,et al.  Global distribution of UV-absorbing aerosols from Nimbus 7/TOMS data , 1997 .

[19]  W. Paul Menzel,et al.  Remote sensing of cloud, aerosol, and water vapor properties from the moderate resolution imaging spectrometer (MODIS) , 1992, IEEE Trans. Geosci. Remote. Sens..

[20]  Yujie Wang,et al.  Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm , 2011 .

[21]  Bryan A. Baum,et al.  The spectral signature of mixed-phase clouds composed of non-spherical ice crystals and spherical liquid droplets in the terrestrial window region , 2003 .

[22]  Timothy J. Schmit,et al.  A Closer Look at the ABI on the GOES-R Series , 2017 .

[23]  Steven A. Ackerman,et al.  Using the GOES Sounder to monitor upper level SO2 from volcanic eruptions , 2008 .

[24]  Thomas Hilker,et al.  On the measurability of change in Amazon vegetation from MODIS , 2015 .

[25]  Kerstin Stebel,et al.  Estimation of the vertical profile of sulfur dioxide injection into the atmosphere by a volcanic eruption using satellite column measurements and inverse transport modeling , 2008 .

[26]  A. Charo,et al.  The 2017-2027 National Academies’ Decadal Survey for Earth Science and Applications from Space , 2015 .

[27]  C. Tucker,et al.  Multi-angle implementation of atmospheric correction for MODIS (MAIAC): 3. Atmospheric correction , 2012 .

[28]  Alexander Marshak,et al.  Terrestrial glint seen from deep space: Oriented ice crystals detected from the Lagrangian point , 2017 .

[29]  Liang Huang,et al.  Synoptic ozone, cloud reflectivity, and erythemal irradiance from sunrise to sunset for the whole earth as viewed by the DSCOVR spacecraft from the earth–sun Lagrange 1 orbit , 2018 .

[30]  Berengere Dubrulle,et al.  Horizontally Oriented Plates in Clouds , 2004 .

[31]  J. Brion,et al.  Ozone UV spectroscopy. II. Absorption cross-sections and temperature dependence , 1995 .

[32]  Alfred J Prata,et al.  Observations of volcanic ash clouds in the 10-12 μm window using AVHRR/2 data , 1989 .

[33]  J. Pisek,et al.  Effects of foliage clumping on the estimation of global terrestrial gross primary productivity , 2012 .

[34]  A. Korolev,et al.  Ice particle habits in stratiform clouds , 2000 .

[35]  G. Labow,et al.  Evaluation of the Ozone Fields in NASA's MERRA-2 Reanalysis. , 2017, Journal of climate.

[36]  Wenhan Qin,et al.  The hotspot effect in heterogeneous vegetation canopies and performances of various hotspot models , 1996 .

[37]  Arlin J. Krueger,et al.  Effect of particle non-sphericity on satellite monitoring of drifting volcanic ash clouds , 1999 .

[38]  Shusen Wang,et al.  Modelling plant carbon and nitrogen dynamics of a boreal aspen forest in CLASS — the Canadian Land Surface Scheme , 2001 .

[39]  Pierre H. Flamant,et al.  OBSERVATIONS OF HORIZONTALLY ORIENTED ICE CRYSTALS IN CIRRUS CLOUDS WITH POLDER-1/ADEOS-1 , 1999 .

[40]  Arlin J. Krueger,et al.  Volcanic sulfur dioxide measurements from the total ozone mapping spectrometer instruments , 1995 .

[41]  Claire L. Parkinson,et al.  Aqua: an Earth-Observing Satellite mission to examine water and other climate variables , 2003, IEEE Trans. Geosci. Remote. Sens..

[42]  Arlin J. Krueger,et al.  Comparison of TOMS and AVHRR volcanic ash retrievals from the August 1992 eruption of Mt. Spurr , 1999 .

[43]  Timothy J. Schmit,et al.  The GOES-R Advanced Baseline Imager and the Continuation of Current Sounder Products , 2008 .

[44]  Yuri Knyazikhin,et al.  The spectral invariant approximation within canopy radiative transfer to support the use of the EPIC/DSCOVR oxygen B-band for monitoring vegetation. , 2017, Journal of quantitative spectroscopy & radiative transfer.

[45]  Kenneth Sassen,et al.  A Midlatitude Cirrus Cloud Climatology from the Facility for Atmospheric Remote Sensing. Part II: Microphysical Properties Derived from Lidar Depolarization , 2001 .

[46]  R. Lacaze,et al.  Multi-angular optical remote sensing for assessing vegetation structure and carbon absorption , 2003 .

[47]  A. Krueger,et al.  Sighting of El Chich�n Sulfur Dioxide Clouds with the Nimbus 7 Total Ozone Mapping Spectrometer , 1983, Science.

[48]  Ranga B. Myneni,et al.  Canopy spectral invariants. Part 1: A new concept in remote sensing of vegetation , 2011 .

[49]  S. Carn,et al.  Using horizontal transport characteristics to infer an emission height time series of volcanic SO2 , 2008 .

[50]  Patrick Minnis,et al.  A Web-Based Tool for Calculating Spectral Band Difference Adjustment Factors Derived From SCIAMACHY Hyperspectral Data , 2016, IEEE Transactions on Geoscience and Remote Sensing.

[51]  Yanlian Zhou,et al.  Development of a two-leaf light use efficiency model for improving the calculation of terrestrial gross primary productivity , 2013 .

[52]  Michael J. Pavolonis,et al.  Gazing at Cirrus Clouds for 25 Years through a Split Window. Part I: Methodology , 2009 .

[53]  Hiren Jethva,et al.  Retrieval of Aerosol Optical Depth above Clouds from OMI Observations: Sensitivity Analysis and Case Studies , 2012 .

[54]  S. Carn,et al.  Extending the long‐term record of volcanic SO2 emissions with the Ozone Mapping and Profiler Suite nadir mapper , 2015 .

[55]  J. Brion,et al.  Absorption Spectra Measurements for the Ozone Molecule in the 350–830 nm Region , 1998 .

[56]  Alfred J Prata,et al.  Retrieval of volcanic SO2 column abundance from Atmospheric Infrared Sounder data , 2007 .

[57]  J. Herman Use of an improved radiation amplification factor to estimate the effect of total ozone changes on action spectrum weighted irradiances and an instrument response function , 2010 .

[58]  P. Levelt,et al.  Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview , 2007 .

[59]  Fabienne Maignan,et al.  Analysis of hot spot directional signatures measured from space , 2002 .

[60]  M. Rautiainen,et al.  Photon recollision probability in modelling the radiation regime of canopies: A review , 2016 .

[61]  P. Stenberg Implications of shoot structure on the rate of photosynthesis at different levels in a coniferous canopy using a model incorporating grouping and penumbra , 1998 .

[62]  A. Marshak,et al.  Calibration of the DSCOVR EPIC visible and NIR channels using MODIS Terra and Aqua data and EPIC lunar observations. , 2018, Atmospheric measurement techniques.

[63]  Steven Platnick,et al.  The MODIS Cloud Optical and Microphysical Products: Collection 6 Updates and Examples From Terra and Aqua , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[64]  P. Cox,et al.  Impact of changes in diffuse radiation on the global land carbon sink , 2009, Nature.

[65]  Urs Mall,et al.  One Moon, Many Measurements 3: Spectral reflectance , 2013 .

[66]  J. Kerkmann,et al.  Simultaneous retrieval of volcanic ash and SO2 using MSG-SEVIRI measurements , 2007 .

[67]  Gary A. Morris,et al.  Dispersion and lifetime of the SO2 cloud from the August 2008 Kasatochi eruption , 2010 .

[68]  Susan L Ustin,et al.  Remote sensing of canopy chemistry , 2013, Proceedings of the National Academy of Sciences.

[69]  Alan H. Strahler,et al.  An algorithm for the retrieval of albedo from space using semiempirical BRDF models , 2000, IEEE Trans. Geosci. Remote. Sens..

[70]  Michael J. Pavolonis,et al.  Automated retrievals of volcanic ash and dust cloud properties from upwelling infrared measurements , 2013 .

[71]  Can Li,et al.  New-generation NASA Aura Ozone Monitoring Instrument (OMI) volcanic SO 2 dataset: algorithm description, initial results, and continuation with the Suomi-NPP Ozone Mapping and Profiler Suite (OMPS) , 2016 .

[72]  Stephen Self,et al.  Global, Long‐Term Sulphur Dioxide Measurements from TOVS Data: A New Tool for Studying Explosive Volcanism and Climate , 2013 .

[73]  Yuekui Yang,et al.  Study of the Effect of Temporal Sampling Frequency on DSCOVR Observations Using the GEOS-5 Nature Run Results (Part II): Cloud Coverage , 2016, Remote. Sens..

[74]  J. Brion,et al.  Ozone UV spectroscopy I: Absorption cross-sections at room temperature , 1992 .

[75]  P. Bhartia,et al.  OMPS Limb Profiler instrument performance assessment , 2014 .

[76]  J. Brion,et al.  High-resolution laboratory absorption cross section of O3. Temperature effect , 1993 .

[77]  Alexei Lyapustin,et al.  A method of retrieving cloud top height and cloud geometrical thickness with oxygen A and B bands for the Deep Space Climate Observatory (DSCOVR) mission: Radiative transfer simulations , 2013 .

[78]  J. Hovenier,et al.  A fast method for retrieval of cloud parameters using oxygen A band measurements from the Global Ozone Monitoring Experiment , 2001 .

[79]  Robert E. Dickinson,et al.  A Two-Big-Leaf Model for Canopy Temperature, Photosynthesis, and Stomatal Conductance , 2004 .

[80]  S. Carn,et al.  Multi-decadal satellite measurements of global volcanic degassing , 2016 .

[81]  Omar Torres,et al.  Improvements to the OMI near-UV aerosol algorithm using A-train CALIOP and AIRS observations , 2013 .

[82]  M. Blumthaler,et al.  Monitoring of erythemal irradiance in the Argentine ultraviolet network , 2002 .

[83]  Paul W. Stackhouse,et al.  The Relevance of the Microphysical and Radiative Properties of Cirrus Clouds to Climate and Climatic Feedback , 1990 .

[84]  Steven Platnick,et al.  Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC). , 2016, Atmospheric measurement techniques.

[85]  Lorraine Remer,et al.  A Color Ratio Method for Simultaneous Retrieval of Aerosol and Cloud Optical Thickness of Above-Cloud Absorbing Aerosols From Passive Sensors: Application to MODIS Measurements , 2013, IEEE Transactions on Geoscience and Remote Sensing.