Convergence of Galerkin approximations for operator Riccati equations—A nonlinear evolution equation approach

Abstract We develop an approximation and convergence theory for Galerkin approximations to infinite dimensional operator Riccati differential equations formulated in the space of Hilbert-Schmidt operators on a separable Hilbert space. We treat the Riccati equation as a nonlinear evolution equation with dynamics described by a nonlinear monotone perturbation of a strongly coercive linear operator. We prove a generic approximation result for quasi-autonomous nonlinear evolution systems involving accretive operators which we then use to demonstrate the Hilbert-Schmidt norm convergence of Galerkin approximations to the solution of the Riccati equation. We illustrate the application of our results in the context of a linear quadratic optimal control problem for a one dimensional heat equation.

[1]  Alfredo Germani,et al.  Galerkin approximation of optimal linear filtering of infinite-dimensional linear systems , 1988 .

[2]  J. Goldstein Approximation of nonlinear semigroups and evolution equations , 1972 .

[3]  Sur l'étude directe d'equations non linéaires intervenant en théorie du contrôle optimal , 1974 .

[4]  Harvey Thomas Banks,et al.  A Unified Framework for Approximation in Inverse Problems for Distributed Parameter Systems. , 1988 .

[5]  I. G. Rosen On Hilbert-Schmidt norm convergence of Galerkin approximation for operator Riccati equations , 1988 .

[6]  Viorel Barbu,et al.  Differential equations in Banach spaces , 1976 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  Hiroki Tanabe,et al.  Equations of evolution , 1979 .

[9]  A. Balakrishnan Applied Functional Analysis , 1976 .

[10]  Galerkin approximation for inverse problems for nonautonomous nonlinear distributed systems , 1991 .

[11]  I. G. Rosen,et al.  ICASE NUMERICAL APPROXIMATION FOR THE INFINITE-DIMENSIONAL DISCRETE-TIME OPTIMAL LINEAR-QUADRATIC REGULATOR PROBLEM , 2008 .

[12]  J. Lions Optimal Control of Systems Governed by Partial Differential Equations , 1971 .

[13]  Michael G. Crandall,et al.  Nonlinear evolution equations in Banach spaces , 1972 .

[14]  J. S. Gibson,et al.  The Riccati Integral Equations for Optimal Control Problems on Hilbert Spaces , 1979 .

[15]  R. Curtain Infinite-Dimensional Linear Systems Theory , 1978 .

[16]  R Temam Sur l'équation de Riccati associée à des opérateurs non bornés, en dimension infinie , 1971 .