Nucleophilic Vinylic Substitution and Vinyl Cation Intermediates in the Reactions of Vinyl Iodonium Salts

Publisher Summary This chapter discusses the concerted-dissociative part of the mechanistic spectrum, mainly on the basis of recent results obtained in the study of reactions of vinyl iodonium salts. Also, photochemical dissociative reactions generating vinyl cations have been discussed and compared with the corresponding thermal reactions. Vinyl cations are admittedly unstable species in both thermodynamic and kinetic terms and are recognized as reactive intermediates. Most recently, a new family of compounds, vinyl iodonium salts, allowed the study of simpler, less stabilized vinylic cations. The parent vinyl cations are very unstable both thermodynamically and kinetically, and can only be generated under forced conditions in solution. The chapter discusses photoexcitation of appropriate precursors that generates primary vinyl cations. Vinyl(aryl) iodonium salts are good electrophiles carrying an excellent nucleofuge, an iodoarene, which makes them good substrates for nucleophilic substitution as well as versatile precursors for vinyl cations.

[1]  R. Gronheid,et al.  Photosolvolysis of (E)-styryl(phenyl)iodonium tetrafluoroborate. Generation and reactivity of a primary vinyl Cation. , 2002, The Journal of organic chemistry.

[2]  Y. Sakanishi,et al.  Mechanism of racemization in the reaction of 4-methylcyclohexylidenemethyliodonium salt with sulfonate ions: formation of intermediate cycloheptyne. , 2001, Journal of the American Chemical Society.

[3]  R. Gronheid,et al.  Thermal and photochemical solvolysis of (E)- and (Z)-2-phenyl-1-propenyl(phenyl)iodonium tetrafluoroborate: benzenium and primary vinylic cation intermediates. , 2001, Journal of the American Chemical Society.

[4]  T. Sugimura,et al.  ChemInform Abstract: Solvolysis of Optically Active 4-Methylcyclohexylidenemethyl Triflate: Evidence Against a Primary Vinyl Cation as an Intermediate. , 2001 .

[5]  A. McNeil,et al.  Vinyl carbocations: solution studies of alkenyl(aryl)iodonium triflate fragmentations. , 2001, The Journal of organic chemistry.

[6]  H. Schlegel,et al.  Inversion versus retention of configuration for nucleophilic substitution at vinylic carbon. , 2001, Journal of the American Chemical Society.

[7]  T. Okuyama,et al.  Solvolysis of 1-Decenyl(phenyl)iodonium Tetrafluoroborate: Mechanisms of Nucleophilic Substitution and Elimination , 2001 .

[8]  M. Ochiai,et al.  Reactions of 2,2-Dialkylvinyl Iodonium Salt with Halide Ions , 2000 .

[9]  M. Ochiai Nucleophilic vinylic substitutions of λ3-vinyliodanes , 2000 .

[10]  Y. Sakanishi,et al.  Chirality Transfer from 4-Methylcyclohexylidenemethyl(phenyl)iodonium Tetrafluoroborate to 4-Methylcycloheptanone during Solvolysis: Evidence against a Primary Vinylic Cation as Intermediate , 2000 .

[11]  R. Gronheid,et al.  Thermal decomposition of alkenyliodonium tetrafluoroborates: a novel route to fluoroalkenes , 2000 .

[12]  Modena,et al.  X-ray structures and anionotropic rearrangements of Di-tert-butyl-substituted thiiranium and thiirenium ions. A structure-reactivity relationship , 2000, The Journal of organic chemistry.

[13]  H. Zuilhof,et al.  α-Substituted Vinyl Cations: Stabilities and Electronic Properties , 2000 .

[14]  Chang Kon Kim,et al.  Nucleophilic Substitution at Unactivated Vinylic Carbon. Factors Conducive to the Energetic Preference for the In-Plane SN2 Pathway , 2000 .

[15]  M. Ochiai,et al.  Solvolysis of 2, 2-Dialkylvinyl Iodonium Salt : Alkyl Participation and Possibility of a Primary Vinylic Cation Intermediate , 1999 .

[16]  A. Bagno,et al.  SOLVENT EFFECT ON THE PROTONATION OF ACETYLENE AND ETHYLENE: CONTINUUM SOLVENT QUANTUM CHEMICAL CALCULATIONS , 1999 .

[17]  Jie Yan,et al.  Hypervalent iodine in synthesis XXXVIII: The synthesis of novel Se-alkenyl O,O-dialkyl phosphoroselenoates by reaction of potassium O,O-dialkyl phosphoroselenoates with alkenyl(phenyl)iodonium salts , 1999 .

[18]  A. McNeil,et al.  Primary Vinyl Cations in Solution: Kinetics and Products of β,β-Disubstituted Alkenyl(aryl)iodonium Triflate Fragmentations , 1999 .

[19]  H. Yamataka,et al.  A THEORETICAL STUDY ON THE REACTIVITY OF VINYL IODONIUM IONS , 1999 .

[20]  Z. Rappoport,et al.  Crystal Structure of 1,2-Diphenyl-5,7-di-tert-butylspiro[2.5]octa-1,4,7-trien-6-one, a Possible Model for Diphenylvinylidenephenonium Ions , 1999 .

[21]  M. Ochiai,et al.  Association and dissociation of (Z)-(β-bromoalkenyl)-(phenyl)iodonium bromide in chloroform solution: Detection of vinyl-λ3-iodane dimer in solution , 1999 .

[22]  M. Ochiai,et al.  Solvolysis of Styryliodonium Salt: Products, Rates, and Mechanisms , 1999 .

[23]  Shinji Yamamoto,et al.  Formamides undergo in-plane bimolecular nucleophilic vinylic substitutions (SN2) by the reaction with (E)-alkenyl(phenyl)iodonium tetrafluoroborates: stereoselective synthesis of (Z)-vinyl formates , 1999 .

[24]  M. Ochiai,et al.  Solvolysis of β,β-Dialkylvinyliodonium Salt: Primary Vinyl Cation Intermediate and Alkyl Participation , 1998 .

[25]  M. Ochiai,et al.  Reactions of Phenyl(styryl)iodonium Tetrafluoroborate with Halide Ions , 1998 .

[26]  M. Ochiai,et al.  In-Plane Vinylic SN2 Substitution and Intramolecular β Elimination of β-Alkylvinyl(chloro)-λ3-iodanes , 1998 .

[27]  NakamuraEiichi,et al.  SN2 Substitution on sp2 Nitrogen of Protonated Oxime , 1998 .

[28]  M. Ochiai,et al.  Vinylic SN2 Reaction of 1-Decenyliodonium Salt with Halide Ions. , 1998 .

[29]  J. Finet Ligand coupling reactions with heteroatomic compounds , 1998 .

[30]  David B. Thomas,et al.  Facile Fragmentations of Alkenyl(aryl)iodonium Triflates , 1997 .

[31]  M. Ochiai,et al.  Stereospecific Synthesis of Vinyl(phenyl)iodonium Tetrafluoroborates via Boron-Iodane Exchange of Vinylboronic Acids and Esters with Hypervalent Phenyliodanes , 1997 .

[32]  M. Ochiai,et al.  Ligand Coupling Mechanism of Nucleophilic Vinylic Substitution of Iodonium Salts with Hypervalent 10-I-3 and 12-I-4 Intermediates , 1997 .

[33]  M. Ochiai,et al.  ACETOLYSIS OF STYRYL AND 1-DECENYL IODONIUM SALTS. OCCURRENCE OF TWO-STEP MECHANISM VIA VINYLENEPHENONIUM ION AND ONE-STEP INVERSION MECHANISM , 1997 .

[34]  S. Patai The Chemistry of Double-Bonded Functional Groups , 1997 .

[35]  P. Stang,et al.  Organic Polyvalent Iodine Compounds. , 1996, Chemical reviews.

[36]  S. Ōae Ligand coupling reactions of hypervalent species , 1996 .

[37]  K. Koga,et al.  Stability−Reactivity Relation on the Reaction of β,β-Disubstituted Vinyl Cations with Ethanol , 1996 .

[38]  M. Charton Advances in quantitative structure-property relationships , 1996 .

[39]  M. Ochiai,et al.  Solvolysis of Cyclohexenyliodonium Salt, a New Precursor for the Vinyl Cation: Remarkable Nucleofugality of the Phenyliodonio Group and Evidence for Internal Return from an Intimate Ion-Molecule Pair , 1995 .

[40]  V. Lucchini,et al.  SN2 AND ADN-E MECHANISMS IN BIMOLECULAR NUCLEOPHILIC SUBSTITUTIONS AT VINYL CARBON. THE RELEVANCE OF THE LUMO SYMMETRY OF THE ELECTROPHILE , 1995 .

[41]  L. Radom,et al.  Is SN2 Substitution with Inversion of Configuration at Vinylic Carbon Feasible , 1994 .

[42]  M. Ochiai,et al.  Synthesis of (Z)-1,2-dihalo-1-alkenes by the reaction of (Z)-(β-halovinyl)phenyliodonium salts with n-Bu4NX or KX/CuX. Competitions between nucleophilic vinylic substitutions and aromatic substitutions , 1994 .

[43]  P. Stang,et al.  Stereospecific synthesis of trisubstituted alkenyl(phenyl)iodonium salts from vinylstannanes , 1994 .

[44]  P. Stang,et al.  Palladium(II) and copper(I) cocatalyzed coupling of stereodefined alkenyl(phenyl)iodonium triflates and unsaturated tri-n-butylstannanes , 1993 .

[45]  A. Müller,et al.  1‐Chloro‐2,2‐bis(4‐chlorophenyl)‐1‐lithioethene · TMEDA · 2THF: Structure of a LiCl Carbenoid , 1993 .

[46]  V. Lucchini,et al.  An authentic case of in-plane nucleophilic vinylic substitution: the anionotropic rearrangement of di-tert-butylthiirenium ions into thietium ions , 1993 .

[47]  Z. Rappoport,et al.  Nucleophilic reactions at vinylic center. 27. Vinylic substitution of 1,2-dibromo-1,2-difluoroethylene and tribromofluoroethylene. An intramolecular kBr/kF element effect and apparent inversion of configuration in SNV reactions , 1993 .

[48]  J. Gawroński,et al.  Chiral carbenoids: their formation and reactions , 1993 .

[49]  Z. Rappoport The rapid steps in nucleophilic vinylic addition-elimination substitution. Recent developments , 1992 .

[50]  Masahito,et al.  Stereoselective Synthesis of Highly Labile(Z)-β-Alkylvinyl(phenyl) iodonium Perchlorates. , 1992 .

[51]  M. Ochiai,et al.  Inversion of configuration in nucleophilic vinylic substitutions of (E)-β-alkylvinyliodonium tetrafluoroborates with halides , 1991 .

[52]  S. Anderson,et al.  An improved scale of solvent nucleophilicity based on the solvolysis of the S-methyldibenzothiophenium ion , 1991 .

[53]  V. Lucchini,et al.  Kinetics of acid-catalyzed hydration of acetylene. Evidence for the presence in the solution phase of unsubstituted vinyl cation , 1990 .

[54]  M. Moloney,et al.  Vinyl cation formation by decomposition of vinyl-lead triacetates. The reactions of vinylmercury and vinyltin compounds with lead tetra-acetate , 1990 .

[55]  S. Fornarini,et al.  Vinylation of aromatic substrates by free unsolvated vinyl cation in the gaseous and liquid phase , 1989 .

[56]  M. Ochiai,et al.  Reactions of vinylsilanes with lewis acid-activated iodosylbenzene: stereospecific syntheses of vinyliodonium tetrafluoroborates and their reactions as highly activated vinyl halides , 1988 .

[57]  M. Ochiai,et al.  Intramolecular aromatic cyclizations of alkenyliodonium tetrafluoroborates , 1986 .

[58]  Z. Rappoport The rich mechanistic world of nucleophilic vinylic (SNV) substitution , 1986 .

[59]  M. Ochiai,et al.  Vinyliodonium salts : their stereospecific synthesis and reactions as the activated vinyl halides , 1985 .

[60]  H. Walborsky,et al.  Chiral vinyllithium reagents. Carbenoid reactions , 1984 .

[61]  S. Fornarini,et al.  Tritiated ethylene as precursor of a free vinyl cation. , 1984 .

[62]  R. Davis,et al.  Photochemistry of alkyl halides. 10. Vinyl halides and vinylidene dihalides , 1983 .

[63]  H. Zollinger,et al.  Reactions of Alkenediazonium Salts. Part 2. Methanolysis of 2,2(2′,2″‐biphenylylene)ethene‐1‐diazonium hexachloroantimonate. A rearrangement to 9‐methoxyphenanthrene , 1983 .

[64]  V. Lucchini,et al.  Stable thiiranium and thiirenium chlorides. Ionization of .beta.-thioalkyl and .beta.-thiovinyl chlorides in sulfur dioxide , 1982 .

[65]  P. Stang,et al.  Perfluoroalkanesulfonic Esters: Methods of Preparation and Applications in Organic Chemistry , 1982 .

[66]  Antonio García Martínez,et al.  Vinylkationen, 36. Solvolyse von Cycloalkylidenmethyl‐ und 1‐Cyclopenten‐1‐yl‐triflaten , 1982 .

[67]  H. Taniguchi,et al.  Photochemistry of vinyl halides. Formation of benzofurans by photolysis of .beta.-(o-methoxyphenyl)vinyl bromides , 1981 .

[68]  V. Lucchini,et al.  Stability and reactivity of thiirenium ions. Dependence on alkyl or aryl substitution at ring carbons , 1981 .

[69]  Z. Rappoport Nucleophilic vinylic substitution. A single- or a multi-step process? , 1981 .

[70]  M. Komatsu,et al.  Reactions of thiirene 1,1-dioxides with .alpha.-metalated nitriles , 1979 .

[71]  M. Hanack,et al.  Vinyl cations. 30. Preparation and solvolysis of 1-cyclobutenyl nonaflates. Generation of stabilized vinyl cation species , 1979 .

[72]  M. Hanack,et al.  Solvolyse gespannter cyclischer Vinyltrifluormethansulfonate , 1978 .

[73]  P. Stang Vinyl triflate chemistry: unsaturated cations and carbenes , 1978 .

[74]  Z. Rappoport Planar tetracoordinate carbon in a transition state , 1978 .

[75]  V. Lucchini,et al.  Synthesis and isolation of stable thiirenium salts , 1977 .

[76]  P. Stang,et al.  VINYL CATIONS. 12. MECHANISM OF REACTION OF CIS- AND TRANS-3-PHENYL-2-BUTEN-2-YL TRIFLATES. EVIDENCE FOR VINYLIDENE PHENONIUM IONS , 1977 .

[77]  P. V. Schleyer,et al.  The SN2-SN1 spectrum. 2. Quantitative treatments of nucleophilic solvent assistance. A scale of solvent nucleophilicities , 1976 .

[78]  P. Stang,et al.  Solvolysis of medium ring size cycloalkenyl triflates : A comparison of relative rates vs ring size , 1976 .

[79]  R. Bergman,et al.  Stereochemistry of olefinic cyclization and solvolytic displacement at vinyl carbon , 1974 .

[80]  P. Schleyer,et al.  Stereochemistry of vinyl cations and vinylic substitutions , 1974 .

[81]  U. Tonellato,et al.  Reactivity of vinyl sulphonic esters. Part XVI. Solvolytic reactivity of β-halogenovinyl derivatives , 1974 .

[82]  P. Schleyer,et al.  Stereochemistry of solvolysis of simple vinyl trifluoromethanesulfonate (triflates) , 1972 .

[83]  R. Bergman,et al.  Inversion component in the solvolytic displacement reactions of alkyl-substituted vinyl trifluoromethanesulfonates , 1972 .

[84]  R. Bergman,et al.  Application of the extended Hueckel molecular orbital method to the properties of vinyl cations. Conformational energies of some 1-cyclopropylvinyl cations and a comparison of SN2 displacements at saturated and vinyl carbon , 1971 .

[85]  P. Schleyer,et al.  Behavior of bent vinyl cations generated by solvolysis of cyclic trifluoromethanesulfonates , 1971 .

[86]  H. Hogeveen,et al.  Trapping of vinyl cations by carbon monoxide , 1971 .

[87]  Sidney I. Miller Stereoselection in the Elementary steps of Organic Reactions , 1968 .

[88]  C. Grob,et al.  Die Solvolyse von α‐Bromstyrolen Substitution am ungesättigten trigonalen Kohlenstoffatom , 1964 .

[89]  Sidney I. Miller,et al.  The Displacement Reaction of Haloalkenes with Iodide Ion. A Survey of Reactivity and Mechanism1 , 1957 .

[90]  S. Winstein,et al.  The Correlation of Solvolysis Rates , 1948 .