Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates.

The two-dimensional layer of molybdenum disulfide (MoS(2)) has recently attracted much interest due to its direct-gap property and potential applications in optoelectronics and energy harvesting. However, the synthetic approach to obtain high-quality and large-area MoS(2) atomic thin layers is still rare. Here we report that the high-temperature annealing of a thermally decomposed ammonium thiomolybdate layer in the presence of sulfur can produce large-area MoS(2) thin layers with superior electrical performance on insulating substrates. Spectroscopic and microscopic results reveal that the synthesized MoS(2) sheets are highly crystalline. The electron mobility of the bottom-gate transistor devices made of the synthesized MoS(2) layer is comparable with those of the micromechanically exfoliated thin sheets from MoS(2) crystals. This synthetic approach is simple, scalable, and applicable to other transition metal dichalcogenides. Meanwhile, the obtained MoS(2) films are transferable to arbitrary substrates, providing great opportunities to make layered composites by stacking various atomically thin layers.

[1]  Arindam Ghosh,et al.  Nature of electronic states in atomically thin MoS₂ field-effect transistors. , 2011, ACS nano.

[2]  S. Morrison,et al.  Inclusion Systems of Organic Molecules in Restacked Single-Layer Molybdenum Disulfide , 1989, Science.

[3]  S. Morrison,et al.  Single-layer MoS2 , 1986 .

[4]  P. Ciambelli,et al.  A Novel Wet Chemistry Approach for the Synthesis of Hybrid 2D Free-Floating Single or Multilayer Nanosheets of MS2@oleylamine (M═Mo, W) , 2011 .

[5]  Andre K. Geim,et al.  Two-dimensional atomic crystals. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Hua Zhang,et al.  Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. , 2012, Small.

[7]  G. Frey,et al.  Stable Blue Emission from a Polyfluorene/Layered‐Compound Guest/Host Nanocomposite , 2006 .

[8]  M. Aegerter,et al.  MoSx Thin Films by Thermolysis of a Single-Source Precursor , 2000 .

[9]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[10]  F. Besenbacher,et al.  Size-dependent structure of MoS2 nanocrystals. , 2007, Nature nanotechnology.

[11]  Zhiyuan Zeng,et al.  Single-layer semiconducting nanosheets: high-yield preparation and device fabrication. , 2011, Angewandte Chemie.

[12]  M. Chan-Park,et al.  Toward high-performance solution-processed carbon nanotube network transistors by removing nanotube bundles , 2008 .

[13]  Jonathan N. Coleman,et al.  Two‐Dimensional Nanosheets Produced by Liquid Exfoliation of Layered Materials. , 2011 .

[14]  Qiang Li,et al.  Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. , 2011, Nano letters.

[15]  J. Brivio,et al.  Ripples and layers in ultrathin MoS2 membranes. , 2011, Nano letters.

[16]  J. L. Brito,et al.  Thermal and reductive decomposition of ammonium thiomolybdates , 1995 .

[17]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[18]  Branimir Radisavljevic,et al.  Integrated circuits and logic operations based on single-layer MoS2. , 2011, ACS nano.

[19]  Hugen Yan,et al.  Anomalous lattice vibrations of single- and few-layer MoS2. , 2010, ACS nano.

[20]  C. Rao,et al.  Inorganic Analogues of Graphene , 2010 .

[21]  Youngki Yoon,et al.  How good can monolayer MoS₂ transistors be? , 2011, Nano letters.

[22]  Q. Li,et al.  Polycrystalline Molybdenum Disulfide (2H−MoS2) Nano- and Microribbons by Electrochemical/Chemical Synthesis , 2004 .

[23]  A. Seayad,et al.  Recent Advances in Hydrogen Storage in Metal-Containing Inorganic Nanostructures and Related Materials , 2004 .

[24]  A. Splendiani,et al.  Emerging Photoluminescence in Monolayer , 2010 .

[25]  C. Su,et al.  Transfer printing of graphene strip from the graphene grown on copper wires , 2011, Nanotechnology.

[26]  T. Korn,et al.  Low-temperature photocarrier dynamics in monolayer MoS2 , 2011, 1106.2951.

[27]  Weichao Yu,et al.  Hydrothermal Synthesis and Characterization of Single-Molecular-Layer MoS2 and MoSe2 , 2001 .

[28]  Kourosh Kalantar-Zadeh,et al.  Atomically thin layers of MoS2 via a two step thermal evaporation-exfoliation method. , 2012, Nanoscale.

[29]  S. Morrison,et al.  Thin oriented films of molybdenum disulphide , 1990 .

[30]  Hisato Yamaguchi,et al.  Photoluminescence from chemically exfoliated MoS2. , 2011, Nano letters.

[31]  J. Rogers,et al.  Synthesis, assembly and applications of semiconductor nanomembranes , 2011, Nature.

[32]  J. Coleman,et al.  Electrical Characteristics of Molybdenum Disulfide Flakes Produced by Liquid Exfoliation , 2011, Advanced materials.

[33]  D. Late,et al.  MoS2 and WS2 analogues of graphene. , 2010, Angewandte Chemie.

[34]  Guosong Hong,et al.  MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. , 2011, Journal of the American Chemical Society.

[35]  J. Cheon,et al.  Two-dimensional nanosheet crystals. , 2007, Angewandte Chemie.

[36]  Hao‐Li Zhang,et al.  A mixed-solvent strategy for efficient exfoliation of inorganic graphene analogues. , 2011, Angewandte Chemie.

[37]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.

[38]  L. Wirtz,et al.  Phonons in single-layer and few-layer MoS2 , 2011 .

[39]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[40]  Clausen,et al.  Atomic-scale structure of single-layer MoS2 nanoclusters , 2000, Physical review letters.