Recent Progress in the Development of Anode Materials for Solid Oxide Fuel Cells

The field of research into solid oxide fuel cell (SOFC) anode materials has been rapidly moving forward. In the four years since the last in-depth review significant advancements have been made in the reduction of the operating temperature and improvement of the performance of SOFCs. This progress report examines the developments in the field and looks to draw conclusions and inspiration from this research. A brief introduction is given to the field, followed by an overview of the principal previous materials. A detailed analysis of the developments of the last 4 years is given using a selection of the available literature, concentrating on metal-fluorite cermets and perovskite-based materials. This is followed by a consideration of alternate fuels for use in SOFCs and their associated problems and a short discussion on the effect of synthesis method on anode performance. The concluding remarks compile the significant developments in the field along with a consideration of the promise of future research. The recent progress in the development of anode materials for SOFCs based on oxygen ion conducting electrolytes is reviewed.

[1]  J. Irvine,et al.  Structural and Electrical Properties of the Perovskite Oxide Sr2FeNbO6 , 2004 .

[2]  Zongping Shao,et al.  Synthesis and assessment of La0.8Sr0.2ScyMn1−yO3−δ as cathodes for solid-oxide fuel cells on scandium-stabilized zirconia electrolyte , 2008 .

[3]  I. Yamanaka,et al.  Alloying effects of Pd and Ni on the catalysis of the oxidation of dry CH4 in solid oxide fuel cells , 2009 .

[4]  R. Lan,et al.  Structure and conductivity of strontium-doped cerium orthovanadates Ce1−xSrxVO4 (0≤x≤0.175) , 2010 .

[5]  Jingli Luo,et al.  Effect of Ba doping on performance of LST as anode in solid oxide fuel cells , 2010 .

[6]  E. Traversa,et al.  High performance anode-supported intermediate temperature solid oxide fuel cells (IT-SOFCs) with La0.8Sr0.2Ga0.8Mg0.2O3−δ electrolyte films prepared by electrophoretic deposition , 2009 .

[7]  J. Vohs,et al.  SOFC Anodes Based on Infiltration of La0.3Sr0.7TiO3 , 2008 .

[8]  Xiaolai Wang,et al.  Highly active and coking resistant Ni/CeO2–ZrO2 catalyst for partial oxidation of methane , 2005 .

[9]  Wenjian Weng,et al.  Catalytic modification of Ni-Sm-doped ceria anodes with copper for direct utilization of dry methane in low-temperature solid oxide fuel cells , 2008 .

[10]  C. Bernuy-López,et al.  Sr2MgMoO6-δ: Structure, Phase Stability, and Cation Site Order Control of Reduction , 2007 .

[11]  Zhe Cheng,et al.  Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2–xYbxO3–δ , 2009, Science.

[12]  Vladislav V. Kharton,et al.  Electrode materials and reaction mechanisms in solid oxide fuel cells: a brief review , 2008 .

[13]  Xingbao Zhu,et al.  Impregnated La0.75Sr0.25Cr0.5Fe0.5O3 − δ -Based Anodes Operating on H2, CH4, and C2H5OH Fuels , 2010 .

[14]  Suttichai Assabumrungrat,et al.  Catalytic steam reforming of methane, methanol, and ethanol over Ni/YSZ : The possible use of these fuels in internal reforming SOFC , 2007 .

[15]  T. Jardiel,et al.  Electrochemical properties of novel SOFC dual electrode La0.75Sr0.25Cr0.5Mn0.3Ni0.2O3−δ , 2011 .

[16]  T. Etsell,et al.  Polarized electrochemical vapor deposition for cermet anodes in solid oxide fuel cells , 2000 .

[17]  Zhonghe Bi,et al.  Cu1−xPdx/CeO2-impregnated cermet anodes for direct oxidation of methane in LaGaO3-electrolyte solid oxide fuel cells , 2010 .

[18]  N. Danilovic,et al.  Ce0.9Sr0.1VOx (x = 3, 4) as anode materials for H2S-containing CH4 fueled solid oxide fuel cells , 2009 .

[19]  Yunhui Huang,et al.  Degree of order and redox balance in B-site ordered double-perovskite oxides, Sr2MMoO6−δ (M=Mg, Mn, Fe, Co, Ni, Zn) , 2010 .

[20]  Qing Xu,et al.  Synthesis and performances of Ni-SDC cermets for IT-SOFC anode , 2008 .

[21]  V. Kharton,et al.  Oxygen ionic transport in Bi2O3-based oxides: II. The Bi2O3–ZrO2–Y2O3 and Bi2O3–Nb2O5–Ho2O3 solid solutions , 1998 .

[22]  Bing Sun,et al.  Ni/YSZ and Ni–CeO2/YSZ anodes prepared by impregnation for solid oxide fuel cells , 2007 .

[23]  Ta-Jen Huang,et al.  Coal syngas reactivity over Ni-added LSCF-GDC anode of solid oxide fuel cells , 2009 .

[24]  Dae-Won Park,et al.  Development of vanadium-based mixed oxide catalysts for selective oxidation of H2S to sulfur , 2001 .

[25]  Karl T. Chuang,et al.  Effect of substitution with Cr3+ and addition of Ni on the physical and electrochemical properties of Ce0.9Sr0.1VO3 as a H2S-active anode for solid oxide fuel cells , 2009 .

[26]  M. Gross,et al.  A Highly Conductive Oxide Anode for Solid Oxide Fuel Cells , 2011 .

[27]  A. Petric,et al.  The Applicability of Sr-deficient n-type SrTiO3 for SOFC Anodes , 2005 .

[28]  Jingli Luo,et al.  Performance and stability of composite nickel and molybdenum sulfide-based anodes for SOFC utilizing H2S , 2008 .

[29]  N. Sakai,et al.  Chemical stability of the La0.9Sr0.1Ga0.8Mg0.2O2.85 electrolyte in a reducing atmosphere , 1999 .

[30]  Weimin Guo,et al.  Fabrication and study on Ni1−xFexO-YSZ anodes for intermediate temperature anode-supported solid oxide fuel cells , 2009 .

[31]  Barry F. Smith,et al.  Redox Stability of SrNb x Ti1 − x O3 – YSZ for Use in SOFC Anodes , 2009 .

[32]  L. D. Jonghe,et al.  Ceria Nanocoating for Sulfur Tolerant Ni-Based Anodes of Solid Oxide Fuel Cells , 2007 .

[33]  Zhonghe Bi,et al.  A Co-Fe alloy as alternative anode for solid oxide fuel cell , 2008 .

[34]  T. He,et al.  La0.7Ca0.3CrO3-Ce0.8Gd0.2O1.9 composites as symmetrical electrodes for solid-oxide fuel cells , 2011 .

[35]  F. Tietz,et al.  Physical characterization of Y2O3–CeO2–TiO2 (YCT) mixed oxides and Ni/YCT cermets as anodes in solid oxide fuel cells , 2008, Journal of Materials Science.

[36]  J. Alonso,et al.  Structure, thermal stability and electrical properties of Ca(V0.5Mo0.5)O3 as solid oxide fuel cell anode , 2009 .

[37]  Zongping Shao,et al.  A new symmetric solid-oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3-δ perovskite oxide as both the anode and cathode , 2009 .

[38]  John T. S. Irvine,et al.  Tetragonal tungsten bronze type phases (Sr1−xBax)0.6Ti0.2Nb0.8O3−δ: Material characterisation and performance as SOFC anodes , 2000 .

[39]  Erdong Wang,et al.  Novel self-humidifying MEA with water transfer region for PEM fuel cells , 2008 .

[40]  J. Irvine,et al.  Study on the structural and electrical properties of the double perovskite oxide SrMn0.5Nb0.5O3−δ , 2002 .

[41]  Wang Shaoliang,et al.  Performance of Ni/ScSZ cermet anode modified by coating with Gd0.2Ce0.8O2 for an SOFC running on methane fuel , 2006 .

[42]  F. Gao,et al.  Electrical properties of yttrium doped strontium titanate with A-site deficiency as potential anode materials for solid oxide fuel cells , 2009 .

[43]  Scott A. Barnett,et al.  Nickel- and Ruthenium-Doped Lanthanum Chromite Anodes: Effects of Nanoscale Metal Precipitation on Solid Oxide Fuel Cell Performance , 2010 .

[44]  P. Slater,et al.  Niobium based tetragonal tungsten bronzes as potential anodes for solid oxide fuel cells: synthesis and electrical characterisation , 1999 .

[45]  Chenghao Yang,et al.  Direct-methane solid oxide fuel cells with Cu1.3Mn1.7O4 spinel internal reforming layer , 2010 .

[46]  U. Stimming,et al.  Recent anode advances in solid oxide fuel cells , 2007 .

[47]  Toshio Suzuki,et al.  Impact of Anode Microstructure on Solid Oxide Fuel Cells , 2009, Science.

[48]  F. Chen,et al.  A Novel Electrode Material for Symmetrical SOFCs , 2010, Advanced materials.

[49]  J. Bradley,et al.  Structure, Conductivity, and Thermal Expansion Studies of Redox Stable Rutile Niobium Chromium Titanates in Oxidizing and Reducing Conditions , 2009 .

[50]  F. García-Alvarado,et al.  Electrical conductivity of the oxygen-deficient rutile CrNbO4−δ , 2009 .

[51]  L. Gauckler,et al.  Spray pyrolysis of electrolyte interlayers for vacuum plasma-sprayed SOFC , 2006 .

[52]  Frank Tietz,et al.  Thermal expansion of SOFC materials , 1999 .

[53]  V. Kharton,et al.  Transport properties of solid oxide electrolyte ceramics: a brief review , 2004 .

[54]  Zongping Shao,et al.  Methane-fueled IT-SOFCs with facile in situ inorganic templating synthesized mesoporous Sm0.2Ce0.8O1.9 as catalytic layer , 2007 .

[55]  Jingli Luo,et al.  The study of Au/MoS2 anode catalyst for solid oxide fuel cell (SOFC) using H2S-containing syngas fuel , 2009 .

[56]  A. Hagen,et al.  Defect and electrical transport properties of Nb-doped SrTiO3 , 2008 .

[57]  F. Tietz,et al.  Mixed conducting oxides YxZr1−x−yTiyO2−x/2 (YZT) and corresponding Ni/YZT cermets as anode materials in an SOFC , 2007 .

[58]  Hailei Zhao,et al.  Synthesis and properties of Y-doped SrTiO3 as an anode material for SOFCs , 2007 .

[59]  Yaohui Zhang,et al.  Ni–Sm0.2Ce0.8O1.9 anode-supported YSZ electrolyte film and its application in solid oxide fuel cells , 2007 .

[60]  J. Zondlo,et al.  Degradation of LaSr2Fe2CrO9−δ solid oxide fuel cell anodes in phosphine-containing fuels , 2010 .

[61]  Douglas G. Ivey,et al.  Thermal analysis of the cyclic reduction and oxidation behaviour of SOFC anodes , 2005 .

[62]  A new anode material for intermediate solid oxide fuel cells , 2008 .

[63]  Z. Wen,et al.  Improvement of Cu–CeO2 anodes for SOFCs running on ethanol fuels , 2009 .

[64]  Z. Wen,et al.  Improvement of multi-layer anode for direct ethanol Solid Oxide Fuel Cells , 2009 .

[65]  E. Wachsman,et al.  A higher conductivity Bi2O3-based electrolyte , 2002 .

[66]  D. Ding,et al.  Ni-LnOx (Ln = La, Ce, Pr, Nd, Sm, Eu, and Gd) cermet anodes for intermediate-temperature solid oxide fuel cells , 2010 .

[67]  Y. Xiong,et al.  Application of Fe–Cr alloys to solid oxide fuel cells for cost-reduction: Oxidation behavior of alloys in methane fuel , 2004 .

[68]  L. Marks,et al.  La0.8Sr0.2Cr1 − xRuxO3 − δ–Gd0.1Ce0.9O1.95 solid oxide fuel cell anodes: Ru precipitation and electrochemical performance , 2009 .

[69]  J. M. Chen,et al.  Isovalent and aliovalent substitution effects on redox chemistry of Sr2MgMoO6 − δ SOFC-anode material , 2010 .

[70]  J. Ruiz-Morales,et al.  Applicability of La2Mo2−yWyO9 materials as solid electrolyte for SOFCs , 2007 .

[71]  Zongping Shao,et al.  Coke formation and performance of an intermediate-temperature solid oxide fuel cell operating on dimethyl ether fuel , 2011 .

[72]  Zhe Cheng,et al.  Electrical properties and sulfur tolerance of La0.75Sr0.25Cr1−xMnxO3 under anodic conditions , 2005 .

[73]  A. N. Busawon,et al.  Ni Infiltration as a Possible Solution to the Redox Problem of SOFC Anodes , 2008 .

[74]  Ta-Jen Huang,et al.  Study of Ni-samaria-doped ceria anode for direct oxidation of methane in solid oxide fuel cells , 2003 .

[75]  Xiufu Sun,et al.  Evaluation of Sr0.88Y0.08TiO3–CeO2 as composite anode for solid oxide fuel cells running on CH4 fuel , 2009 .

[76]  J. Irvine,et al.  Preparation and characterisation of apatite-type lanthanum silicates by a sol-gel process , 2001 .

[77]  K. Poeppelmeier,et al.  Application of LaSr2Fe2CrO9 − δ in Solid Oxide Fuel Cell Anodes , 2008 .

[78]  M. Verkerk,et al.  High oxygen ion conduction in sintered oxides of the Bi2O3-Er2O3 system , 1980 .

[79]  A. Kaiser,et al.  Niobia Based Rutile Materials as SOFC Anodes , 2001 .

[80]  Y. Xiong,et al.  Feasibility of Ni-based cermet anode for direct HC SOFCs: Fueling ethane at a low S/C condition to Ni–ScSZ anode-supported cell ☆ , 2006 .

[81]  J. Conesa,et al.  Structural, catalytic/redox and electrical characterization of systems combining Cu–Ni with CeO2 or Ce1−xMxO2−δ (M = Gd or Tb) for direct methane oxidation , 2009 .

[82]  A. Su,et al.  Porous Ag–Ce0.8Sm0.2O1.9 cermets as anode materials for intermediate temperature solid oxide fuel cells using CO fuel , 2008 .

[83]  S. Chan,et al.  Fabrication and evaluation of Ni-GDC composite anode prepared by aqueous-based tape casting method for low-temperature solid oxide fuel cell , 2010 .

[84]  S. Barnett,et al.  An Octane-Fueled Solid Oxide Fuel Cell , 2005, Science.

[85]  K. Poeppelmeier,et al.  Structural and Chemical Evolution of the SOFC Anode La0.30Sr0.70Fe0.70Cr0.30O3−δ upon Reduction and Oxidation: An in Situ Neutron Diffraction Study , 2010 .

[86]  S. Jiang,et al.  Fabrication and performance of gadolinia-doped ceria-based intermediate-temperature solid oxide fuel cells , 2008 .

[87]  S. Singhal,et al.  Advanced anodes for high-temperature fuel cells , 2004, Nature materials.

[88]  Cha-Hong Sun,et al.  Plasma sprayed metal supported YSZ/Ni-LSGM-LSCF ITSOFC with nanostructured anode , 2008 .

[89]  O. Joubert,et al.  New SOFC electrode materials: The Ni-substituted LSCM-based compounds (La0.75Sr0.25)(Cr0.5Mn0.5 − xNix)O3 − δ and (La0.75Sr0.25)(Cr0.5 − xNixMn0.5)O3 − δ , 2010 .

[90]  John T. S. Irvine,et al.  A symmetrical solid oxide fuel cell demonstrating redox stable perovskite electrodes , 2006 .

[91]  J. Brouwer,et al.  Modified Pechini synthesis and characterization of Y-doped strontium titanate perovskite , 2007 .

[92]  M. Mogensen,et al.  Electrical conductivities and chemical stabilities of mixed conducting pyrochlores for SOFC applications , 2000 .

[93]  T. He,et al.  Double-perovskites A2FeMoO6−δ (A = Ca, Sr, Ba) as anodes for solid oxide fuel cells , 2010 .

[94]  Christopher S. Johnson,et al.  Sulfur-tolerant anode materials for solid oxide fuel cell application , 2007 .

[95]  S. Balomenou,et al.  Synthesis and characterization of La0.75Sr0.25Cr0.9M0.1O3 perovskites as anodes for CO-fuelled solid oxide fuel cells , 2010 .

[96]  Wuzong Zhou,et al.  Disruption of extended defects in solid oxide fuel cell anodes for methane oxidation , 2006, Nature.

[97]  H. Tuller,et al.  Stability and mixed ionic electronic conduction in Gd2(Ti1 − xMox)2O7 under anodic conditions , 1997 .

[98]  A. Hagen,et al.  The effect of H2S on the performance of Ni-YSZ anodes in solid oxide fuel cells , 2009 .

[99]  K. B. Yoo,et al.  Performance of La-doped strontium titanate (LST) anode on LaGaO3-based SOFC , 2009 .

[100]  E. Thomsen,et al.  Reversible poisoning of nickel/zirconia solid oxide fuel cell anodes by hydrogen chloride in coal gas , 2010 .

[101]  V. Thangadurai,et al.  Novel Nd2WO6-type Sm2−xAxM1−yByO6−δ (A = Ca, Sr; M = Mo, W; B = Ce, Ni) mixed conductors , 2011 .

[102]  Ryan Clemmer,et al.  Effect of hydrogen on carbon formation on Ni/YSZ composites exposed to methane , 2008 .

[103]  M. Allix,et al.  Highly Conducting Redox Stable Pyrochlore Oxides , 2008 .

[104]  M. Aranda,et al.  Synthesis, phase stability and electrical conductivity of Sr2MgMoO6−δ anode , 2008 .

[105]  J. Vohs,et al.  SOFC Anodes Based on LST–YSZ Composites and on Y0.04Ce0.48Zr0.48O2 , 2008 .

[106]  Jingli Luo,et al.  Sulfur-Tolerant Anode Catalyst for Solid Oxide Fuel Cells Operating on H2S-Containing Syngas† , 2010 .

[107]  S. Linic,et al.  Hydrocarbon steam reforming on Ni alloys at solid oxide fuel cell operating conditions , 2008 .

[108]  Hailei Zhao,et al.  Electrical conduction behavior of La, Co co-doped SrTiO3 perovskite as anode material for solid oxide fuel cells , 2009 .

[109]  P. Slater,et al.  Synthesis and electrical characterisation of doped perovskite titanates as potential anode materials for solid oxide fuel cells , 1997 .

[110]  F. Tietz,et al.  An efficient ceramic-based anode for solid oxide fuel cells , 2007 .

[111]  Kevin Kendall,et al.  The reduction of nickelzirconia cermet anodes and the effects on supported thin electrolytes , 1996 .

[112]  Jung-Hoon Song,et al.  The effect of porosity gradient in a Nickel/Yttria Stabilized Zirconia anode for an anode-supported planar solid oxide fuel cell , 2010 .

[113]  V. Antonucci,et al.  Performance and life-time behaviour of NiCu–CGO anodes for the direct electro-oxidation of methane in IT-SOFCs , 2007 .

[114]  Zhe Cheng,et al.  A Solid Oxide Fuel Cell Running on H2S ∕ CH4 Fuel Mixtures , 2006 .

[115]  F. Gao,et al.  La and Sc co-doped SrTiO3 as novel anode materials for solid oxide fuel cells , 2008 .

[116]  R. Lan,et al.  Structure, conductivity and redox stability of solid solution Ce1−xCaxVO4 (0 ≤ x ≤ 0.4125) , 2011 .

[117]  M. Aranda,et al.  Redox behaviour, chemical compatibility and electrochemical performance of Sr2MgMoO6―δ as SOFC anode , 2010 .

[118]  Randall Gemmen,et al.  The effect of coal syngas containing AsH3 on the performance of SOFCs: Investigations into the effect of operational temperature, current density and AsH3 concentration , 2007 .

[119]  Yanlei Zhang,et al.  Sr2NiMoO6−δ as anode material for LaGaO3-based solid oxide fuel cell , 2008 .

[120]  Yunfei Cheng,et al.  Preparation and electrical properties of yttrium-doped strontium titanate with B-site deficiency , 2008 .

[121]  Allan J. Jacobson,et al.  Materials for Solid Oxide Fuel Cells , 2010 .

[122]  L. Csányi,et al.  The role of vanadium(V) in the catalysed oxidation of hydrocarbons , 1999 .

[123]  Lei Zhang,et al.  Conductivity and stability of cobalt pyrovanadate , 2011 .

[124]  J. Irvine,et al.  Synthesis and Characterization of ( La0.75Sr0.25 ) Cr0.5Mn0.5 O 3 − δ , a Redox-Stable, Efficient Perovskite Anode for SOFCs , 2004 .

[125]  W. Bessler,et al.  Trends in catalytic activity for SOFC anode materials , 2008 .

[126]  R. Gemmen,et al.  The effect of coal syngas containing HCl on the performance of solid oxide fuel cells: Investigations into the effect of operational temperature and HCl concentration , 2007 .

[127]  Takashi Hibino,et al.  Ru-catalyzed anode materials for direct hydrocarbon SOFCs , 2003 .

[128]  Massimiliano Cimenti,et al.  Direct utilization of methanol and ethanol in solid oxide fuel cells using Cu–Co(Ru)/Zr0.35Ce0.65O2−δ anodes , 2010 .

[129]  J. Irvine,et al.  Novel redox reversible oxide, Sr-doped cerium orthovanadate to metavanadate , 2011 .

[130]  J. Stevenson,et al.  Thermal, Electrical, and Electrocatalytical Properties of Lanthanum-Doped Strontium Titanate , 2002 .

[131]  Michael C. Tucker,et al.  Progress in metal-supported solid oxide fuel cells: A review , 2010 .

[132]  Xingbao Zhu,et al.  A comparison of La0.75Sr0.25Cr0.5Mn0.5O3−δ and Ni impregnated porous YSZ anodes fabricated in two different ways for SOFCs , 2010 .

[133]  Xingbao Zhu,et al.  Enhanced performance of solid oxide fuel cells with Ni/CeO2 modified La0.75Sr0.25Cr0.5Mn0.5O3−δ anodes , 2009 .

[134]  A. Petric,et al.  Conductivity and stability of SrVO3 and mixed perovskites at low oxygen partial pressures , 2001 .

[135]  Hailei Zhao,et al.  Electrical conductivity and structural stability of La-doped SrTiO3 with A-site deficiency as anode materials for solid oxide fuel cells , 2010 .

[136]  J. Ruiz-Morales,et al.  High temperature phase transition in SOFC anodes based on Sr2MgMoO6−δ , 2009 .

[137]  Chenghao Yang,et al.  Self-rising synthesis of Ni–SDC cermets as anodes for solid oxide fuel cells , 2010 .

[138]  Chusheng Chen,et al.  Structure properties and catalytic performance in methane combustion of double perovskites Sr2Mg1−xMnxMoO6−δ , 2011 .

[139]  B. Morel,et al.  Solid Oxide Fuel Cells damage mechanisms due to Ni-YSZ re-oxidation: Case of the Anode Supported Cell , 2009 .

[140]  K. Feng,et al.  High performance Ni–Sm2O3 cermet anodes for intermediate-temperature solid oxide fuel cells , 2009 .

[141]  P. Slater,et al.  Synthesis and electrical characterisation of the tetragonal tungsten bronze type phases, (Ba/Sr/Ca/La)0 6MxNb1−xO3−δ (M=Mg, Ni, Mn, Cr, Fe, In, Sn): evaluation as potential anode materials for solid oxide fuel cells , 1999 .

[142]  S. Corbin,et al.  The influence of pore and Ni morphology on the electrical conductivity of porous Ni/YSZ composite anodes for use in solid oxide fuel cell applications , 2009 .

[143]  Yunhui Huang,et al.  Sr2CoMoO6 anode for solid oxide fuel cell running on H2 and CH4 fuels , 2011 .

[144]  Suljo Linic,et al.  First-Principles Analysis of the Activity of Transition and Noble Metals in the Direct Utilization of Hydrocarbon Fuels at Solid Oxide Fuel Cell Operating Conditions , 2009 .

[145]  Chun-Liang Chang,et al.  High performance metal-supported intermediate temperature solid oxide fuel cells fabricated by atmospheric plasma spraying , 2011 .

[146]  X. Ye,et al.  Performance of Ni/ScSZ cermet anode modified by coating with Gd0.2Ce0.8O2 for a SOFC , 2007 .

[147]  Z. Wen,et al.  Use of La0.75Sr0.25Cr0.5Mn0.5O3 materials in composite anodes for direct ethanol solid oxide fuel cells , 2008 .

[148]  V. Antonucci,et al.  Electrochemical investigation of a propane-fed solid oxide fuel cell based on a composite Ni-perovskite anode catalyst , 2009 .

[149]  N. Minh Ceramic Fuel Cells , 1993 .

[150]  John T. S. Irvine,et al.  LSCM–(YSZ–CGO) composites as improved symmetrical electrodes for solid oxide fuel cells , 2007 .

[151]  Catherine M. Grgicak,et al.  Synergistic effects of Ni1−xCox-YSZ and Ni1−xCux-YSZ alloyed cermet SOFC anodes for oxidation of hydrogen and methane fuels containing H2S , 2008 .

[152]  Hailei Zhao,et al.  Synthesis and electrical properties of Co-doped Y0.08Sr0.92TiO3 − δ as a potential SOFC anode , 2008 .

[153]  J. Irvine,et al.  Thermomechanical and conductivity studies of doped niobium titanates as possible current collector material in the SOFC anode , 2003 .

[154]  John T. S. Irvine,et al.  A redox-stable efficient anode for solid-oxide fuel cells , 2003, Nature materials.

[155]  R. Mukundan,et al.  Sulfur Tolerant Anodes for SOFCs , 2004 .

[156]  J. Irvine,et al.  Discovery and characterization of novel oxide anodes for solid oxide fuel cells. , 2004, Chemical record.

[157]  Xiufu Sun,et al.  Anode performance of LST-xCeO2 for solid oxide fuel cells , 2008 .

[158]  Paulo Emílio V. de Miranda,et al.  Oxidação direta do etanol no anodo de PaCOS , 2008 .

[159]  Shung-Ik Lee,et al.  Thin film solid oxide fuel cells with copper cermet anodes , 2010 .

[160]  T. He,et al.  Nanostructured palladium–La0.75Sr0.25Cr0.5Mn0.5O3/Y2O3–ZrO2 composite anodes for direct methane and ethanol solid oxide fuel cells , 2008 .

[161]  Jianjun Ma,et al.  A high-performance ammonia-fueled SOFC based on a YSZ thin-film electrolyte , 2007 .

[162]  U. Balachandran,et al.  Electrical conductivity in strontium titanate , 1981 .

[163]  Hwan Moon,et al.  Performance and durability of Ni-coated YSZ anodes for intermediate temperature solid oxide fuel cells , 2006 .

[164]  P. D. Gallo,et al.  Redox stability of BIMEVOX.10 materials (ME=Co, Cu) , 2002 .

[165]  B. Riegel,et al.  Electrical properties of Y0.08Sr0.92Ti0.92Nb0.08 O3−δ after reduction in different reducing conditions , 2009 .

[166]  J. Irvine,et al.  Ce-substituted LSCM as new anode material for SOFC operating in dry methane , 2008 .

[167]  J. Irvine,et al.  Synthesis and characterization of (Pr0.75Sr0.25)1 − xCr0.5Mn0.5O3 − δ as anode for SOFCs , 2010 .

[168]  John B. Goodenough,et al.  Electrochemical performance of La-doped Sr2MgMoO6−δ in natural gas , 2007 .

[169]  Changhee Lee,et al.  Comparison of solid oxide fuel cell anode coatings prepared from different feedstock powders by atmospheric plasma spray method , 2007 .

[170]  J. Vohs,et al.  Investigation of the Structural and Catalytic Requirements for High-Performance SOFC Anodes Formed by Infiltration of LSCM , 2009 .

[171]  Liming Yang,et al.  Y-doped SrTiO3 based sulfur tolerant anode for solid oxide fuel cells , 2007 .

[172]  Juan Carlos Ruiz-Morales,et al.  Evaluation of apatite silicates as solid oxide fuel cell electrolytes , 2010 .

[173]  H. Yahiro,et al.  Improvement of Ni/SDC anode by alkaline earth metal oxide addition for direct methane–solid oxide fuel cells , 2009 .

[174]  Qing-chun Yu,et al.  Characterization of the Ni-ScSZ anode with a LSCM-CeO2 catalyst layer in thin film solid oxide fuel cell running on ethanol fuel , 2010 .

[175]  S. Chuang,et al.  Investigating the CH4 reaction pathway on a novel LSCF anode catalyst in the SOFC , 2009 .

[176]  Z. Yang,et al.  Pd-impregnated SYT/LDC composite as sulfur-tolerant anode for solid oxide fuel cells , 2009 .

[177]  Hyunjoon Lee,et al.  Enhanced stability of Ni–Fe/GDC solid oxide fuel cell anodes for dry methane fuel , 2010 .

[178]  Joongmyeon Bae,et al.  Fast performance degradation of SOFC caused by cathode delamination in long-term testing , 2010 .

[179]  S. Chan,et al.  High-performance (La,Sr ) (Cr,Mn )O3 / (Gd,Ce )O2- δ composite anode for direct oxidation of methane , 2007 .

[180]  Q. Ma,et al.  Direct utilization of ammonia in intermediate-temperature solid oxide fuel cells , 2006 .

[181]  Xingbao Zhu,et al.  Fabrication and performance of membrane solid oxide fuel cells with La0.75Sr0.25Cr0.5Mn0.5O3−δ impregnated anodes , 2010 .

[182]  J. Toyir,et al.  Ir/Ce0.9Gd0.1O2−x as a new potential anode component in solid oxide fuel cells integrating the concept of gradual internal reforming of methane , 2010 .

[183]  A. Nakajo,et al.  RedOx study of anode-supported solid oxide fuel cell , 2009 .

[184]  M. Islam,et al.  Developing apatites for solid oxide fuel cells: insight into structural, transport and doping properties , 2007 .

[185]  C. Coddet,et al.  Development and characterisation of (Ni, Cu, Co)-YSZ and Cu-Co-YSZ cermets anode materials for SOFC application , 2008 .

[186]  J. Irvine,et al.  Mixed conductivity and electrochemical behavior of (La0.75Sr0.25)0.95Cr0.5Mn0.5O3 − δ , 2007 .

[187]  Tatsumi Ishihara,et al.  Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor , 1994 .

[188]  John B Goodenough,et al.  Double Perovskites as Anode Materials for Solid-Oxide Fuel Cells , 2006, Science.

[189]  J. Zhu,et al.  Cu(Pd)-impregnated La0.75Sr0.25Cr0.5Mn0.5O3 − δ anodes for direct utilization of methane in SOFC , 2007 .

[190]  J. Vohs,et al.  Engineering Composite Oxide SOFC Anodes for Efficient Oxidation of Methane , 2008 .

[191]  S. McIntosh,et al.  Insights Into the Fuel Oxidation Mechanism of La0.75Sr0.25Cr0.5Mn0.5O3 − δ SOFC Anodes , 2010 .

[192]  N. Sullivan,et al.  Fabrication and evaluation of solid-oxide fuel cell anodes employing reaction-sintered yttria-stabilized zirconia , 2009 .

[193]  Tomoo Iwata,et al.  Characterization of Ni‐YSZ Anode Degradation for Substrate‐Type Solid Oxide Fuel Cells , 1996 .

[194]  G. Meng,et al.  Electrochemical performance of IT-SOFCs with a double-layer anode , 2007 .

[195]  Boris Iwanschitz,et al.  Fundamental mechanisms limiting solid oxide fuel cell durability , 2008 .

[196]  V. Antonucci,et al.  Electrochemical behaviour of propane-fed solid oxide fuel cells based on low Ni content anode catalysts , 2009 .

[197]  J. Irvine,et al.  Reduction studies and evaluation of surface modified A-site deficient La-doped SrTiO3 as anode material for IT-SOFCs , 2009 .

[198]  Jingli Luo,et al.  Synthesis and characterization of new ternary transition metal sulfide anodes for H2S-powered solid oxide fuel cell , 2008 .

[199]  C. Argirusis,et al.  Catalytic properties and coking stability of new anode materials for internal methane reforming in the intermediate temperature solid oxide fuel cells , 2009 .

[200]  G. Somorjai,et al.  Structure and Function of the Catalyst and the Promoter in Co—Mo Hydrodesulfurization Catalysts , 1989 .

[201]  Lei Zhang,et al.  Study on conductivity and redox stability of iron orthovanadate , 2011 .

[202]  Jingli Luo,et al.  LaCrO3−VOx−YSZ Anode Catalyst for Solid Oxide Fuel Cell Using Impure Hydrogen , 2007 .

[203]  N. Danilovic,et al.  Correlation of Fuel Cell Anode Electrocatalytic and ex situ Catalytic Activity of Perovskites La0.75Sr0.25Cr0.5X0.5O3−δ (X = Ti, Mn, Fe, Co)† , 2010 .

[204]  Kevin Huang,et al.  Sr2Fe4/3Mo2/3O6 as anodes for solid oxide fuel cells , 2010 .

[205]  I. Celik,et al.  Effects of coal syngas impurities on anodes of solid oxide fuel cells , 2008 .

[206]  Ta-Jen Huang,et al.  Methane decomposition and self de-coking over gadolinia-doped ceria-supported Ni catalysts , 2007 .