On the Robust PCA and Weiszfeld’s Algorithm

The principal component analysis (PCA) is a powerful standard tool for reducing the dimensionality of data. Unfortunately, it is sensitive to outliers so that various robust PCA variants were proposed in the literature. This paper addresses the robust PCA by successively determining the directions of lines having minimal Euclidean distances from the data points. The corresponding energy functional is non-differentiable at a finite number of directions which we call anchor directions. We derive a Weiszfeld-like algorithm for minimizing the energy functional which has several advantages over existing algorithms. Special attention is paid to carefully handling the anchor directions, where the relation between local minima and one-sided derivatives of Lipschitz continuous functions on submanifolds of $$\mathbb {R}^d$$Rd is taken into account. Using ideas for stabilizing the classical Weiszfeld algorithm at anchor points and the Kurdyka–Łojasiewicz property of the energy functional, we prove global convergence of the whole sequence of iterates generated by the algorithm to a critical point of the energy functional. Numerical examples demonstrate the very good performance of our algorithm.

[1]  Gabriele Steidl,et al.  On a Projected Weiszfeld Algorithm , 2017, SSVM.

[2]  Peter J. Huber,et al.  Robust Statistics , 2005, Wiley Series in Probability and Statistics.

[3]  Nojun Kwak,et al.  Principal Component Analysis Based on L1-Norm Maximization , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  X. Pennec Barycentric subspace analysis on manifolds , 2016, The Annals of Statistics.

[5]  Gilad Lerman,et al.  An Overview of Robust Subspace Recovery , 2018, Proceedings of the IEEE.

[6]  P. Thomas Fletcher,et al.  Principal geodesic analysis for the study of nonlinear statistics of shape , 2004, IEEE Transactions on Medical Imaging.

[7]  Hédy Attouch,et al.  Proximal Alternating Minimization and Projection Methods for Nonconvex Problems: An Approach Based on the Kurdyka-Lojasiewicz Inequality , 2008, Math. Oper. Res..

[8]  Stefan Sommer,et al.  Optimization over geodesics for exact principal geodesic analysis , 2010, Advances in Computational Mathematics.

[9]  A. Ben-Tal,et al.  Directional derivatives in nonsmooth optimization , 1985 .

[10]  Peter J. Rousseeuw,et al.  Robust Regression and Outlier Detection , 2005, Wiley Series in Probability and Statistics.

[11]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[12]  Vincenzo Verardi Robust principal component analysis in Stata , 2009 .

[13]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd Edition , 2001, Springer Series in Statistics.

[14]  Panos P. Markopoulos,et al.  Efficient L1-Norm Principal-Component Analysis via Bit Flipping , 2016, IEEE Transactions on Signal Processing.

[15]  Amir Beck,et al.  Weiszfeld’s Method: Old and New Results , 2015, J. Optim. Theory Appl..

[16]  Cun-Hui Zhang,et al.  A modified Weiszfeld algorithm for the Fermat-Weber location problem , 2001, Math. Program..

[17]  Yuan-Hai Shao,et al.  Principal Component Analysis Based on T𝓁1-norm Maximization , 2020, ArXiv.

[18]  Xavier Pennec Sample-Limited L_p Barycentric Subspace Analysis on Constant Curvature Spaces , 2017, GSI.

[19]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[20]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[21]  Russell A. Epstein,et al.  5/spl plusmn/2 eigenimages suffice: an empirical investigation of low-dimensional lighting models , 1995, Proceedings of the Workshop on Physics-Based Modeling in Computer Vision.

[22]  Gilad Lerman,et al.  $${l_p}$$lp-Recovery of the Most Significant Subspace Among Multiple Subspaces with Outliers , 2010, ArXiv.

[23]  Marc Teboulle,et al.  Conditional Gradient Algorithmsfor Rank-One Matrix Approximations with a Sparsity Constraint , 2011, SIAM Rev..

[24]  J. Tropp,et al.  Two proposals for robust PCA using semidefinite programming , 2010, 1012.1086.

[25]  Lawrence M. Ostresh On the Convergence of a Class of Iterative Methods for Solving the Weber Location Problem , 1978, Oper. Res..

[26]  P. Thomas Fletcher,et al.  Principal Geodesic Analysis on Symmetric Spaces: Statistics of Diffusion Tensors , 2004, ECCV Workshops CVAMIA and MMBIA.

[27]  Kuldeep Kumar,et al.  Robust Statistics, 2nd edn , 2011 .

[28]  Feiping Nie,et al.  Robust Principal Component Analysis with Non-Greedy l1-Norm Maximization , 2011, IJCAI.

[29]  S. Setzer,et al.  On the rotational invariant L1-norm PCA , 2020 .

[30]  Takeo Kanade,et al.  Robust L/sub 1/ norm factorization in the presence of outliers and missing data by alternative convex programming , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[31]  Guoying Li,et al.  Projection-Pursuit Approach to Robust Dispersion Matrices and Principal Components: Primary Theory and Monte Carlo , 1985 .

[32]  Joel A. Tropp,et al.  Robust Computation of Linear Models by Convex Relaxation , 2012, Foundations of Computational Mathematics.

[33]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[34]  Gilad Lerman,et al.  Fast, Robust and Non-convex Subspace Recovery , 2014, 1406.6145.

[35]  Constantine Caramanis,et al.  Robust PCA via Outlier Pursuit , 2010, IEEE Transactions on Information Theory.

[36]  K. Kurdyka On gradients of functions definable in o-minimal structures , 1998 .

[37]  N. D. Yen,et al.  Fréchet subdifferential calculus and optimality conditions in nondifferentiable programming , 2006 .

[38]  Panos P. Markopoulos,et al.  Optimal Algorithms for L1-subspace Signal Processing , 2014, IEEE Transactions on Signal Processing.

[39]  B Muralidhara,et al.  A Majorize - Minimize Strategy for Subspace Optimization Applied to Image Restoration , 2014 .

[40]  V. Yohai,et al.  Robust Statistics: Theory and Methods , 2006 .

[41]  Chris H. Q. Ding,et al.  R1-PCA: rotational invariant L1-norm principal component analysis for robust subspace factorization , 2006, ICML.

[42]  I. Norman Katz,et al.  Local convergence in Fermat's problem , 1974, Math. Program..

[43]  Stephan Huckemann,et al.  Principal component analysis for Riemannian manifolds, with an application to triangular shape spaces , 2006, Advances in Applied Probability.

[44]  Gabriele Steidl,et al.  On vector and matrix median computation , 2012, J. Comput. Appl. Math..

[45]  Qi Tian,et al.  Statistical modeling of complex backgrounds for foreground object detection , 2004, IEEE Transactions on Image Processing.

[46]  P. Rousseeuw,et al.  Least median of squares: a robust method for outlier and model error detection in regression and calibration , 1986 .

[47]  Harold W. Kulin,et al.  AN EFFICIENT ALGORITHM FOR THE NUMERICAL SOLUTION OF THE GENERALIZED WEBER PROBLEM IN SPATIAL ECONOMICS , 1962 .

[48]  Hans-Peter Kriegel,et al.  A General Framework for Increasing the Robustness of PCA-Based Correlation Clustering Algorithms , 2008, SSDBM.

[49]  Karl Kunisch,et al.  Robust \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ell _1$$\end{document}ℓ1 Approaches to Computing the Geometric , 2016, Journal of Mathematical Imaging and Vision.

[50]  M. Shirosaki Another proof of the defect relation for moving targets , 1991 .

[51]  G. Lerman,et al.  Robust recovery of multiple subspaces by geometric l_p minimization , 2011, 1104.3770.

[52]  Gilad Lerman,et al.  A Well-Tempered Landscape for Non-convex Robust Subspace Recovery , 2017, J. Mach. Learn. Res..

[53]  Harold W. Kuhn,et al.  A note on Fermat's problem , 1973, Math. Program..

[54]  BolteJérôme,et al.  Proximal Alternating Minimization and Projection Methods for Nonconvex Problems , 2010 .

[55]  William W. Hager,et al.  Projection algorithms for nonconvex minimization with application to sparse principal component analysis , 2014, Journal of Global Optimization.

[56]  Benar Fux Svaiter,et al.  Convergence of descent methods for semi-algebraic and tame problems: proximal algorithms, forward–backward splitting, and regularized Gauss–Seidel methods , 2013, Math. Program..

[57]  Matthias Hein,et al.  Robust PCA: Optimization of the Robust Reconstruction Error Over the Stiefel Manifold , 2014, GCPR.

[58]  Søren Hauberg,et al.  Grassmann Averages for Scalable Robust PCA , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.