Analysis of a full space-time discretization of the Navier-Stokes equations by a local projection stabilization method

A finite element error analysis of a local projection stabilization (LPS) method for the time-dependent Navier–Stokes equations is presented. The focus is on the high-order term-by-term stabilization method that has one level, in the sense that it is defined on a single mesh, and in which the projection-stabilized structure of standard LPS methods is replaced by an interpolation-stabilized structure. The main contribution is on proving, theoretically and numerically, the optimal convergence order of the arising fully discrete scheme. In addition, the asymptotic energy balance is obtained for slightly smooth flows. Numerical studies support the analytical results and illustrate the potential of the method for the simulation of turbulent flows. Smooth unsteady flows are simulated with optimal order of accuracy.

[1]  F. Browand,et al.  Vortex pairing : the mechanism of turbulent mixing-layer growth at moderate Reynolds number , 1974, Journal of Fluid Mechanics.

[2]  Samuele Rubino Numerical modelling of turbulence by Richardson number-based and VMS models , 2014 .

[3]  Gunar Matthies,et al.  Stabilization of local projection type applied to convection-diffusion problems with mixed boundary conditions. , 2008 .

[4]  Gunar Matthies,et al.  Local projection type stabilization applied to inf–sup stable discretizations of the Oseen problem , 2015 .

[5]  Chih-Ming Ho,et al.  Perturbed Free Shear Layers , 1984 .

[6]  Volker John,et al.  Large Eddy Simulation of Turbulent Incompressible Flows - Analytical and Numerical Results for a Class of LES Models , 2003, Lecture Notes in Computational Science and Engineering.

[7]  L. R. Scott,et al.  Finite element interpolation of nonsmooth functions satisfying boundary conditions , 1990 .

[8]  T. Chacón Rebollo,et al.  Numerical Analysis of Penalty Stabilized Finite Element Discretizations of Evolution Navier–Stokes Equations , 2015, J. Sci. Comput..

[9]  Hehu Xie,et al.  Discontinuous Galerkin time stepping with local projection stabilization for transient convection–diffusion-reaction problems , 2011 .

[10]  Miguel A. Fernández,et al.  Continuous interior penalty finite element method for the time-dependent Navier–Stokes equations: space discretization and convergence , 2007, Numerische Mathematik.

[11]  Gabriel Wittum,et al.  Large-Eddy Simulation and Multigrid Methods , 2001 .

[12]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[13]  Elias Balaras,et al.  Self-similar states in turbulent mixing layers , 1999, Journal of Fluid Mechanics.

[14]  Volker John,et al.  A Review of Variational Multiscale Methods for the Simulation of Turbulent Incompressible Flows , 2015 .

[15]  Lutz Tobiska,et al.  The two-level local projection stabilization as an enriched one-level approach , 2012, Adv. Comput. Math..

[16]  Roland Becker,et al.  A finite element pressure gradient stabilization¶for the Stokes equations based on local projections , 2001 .

[17]  C. Ross Ethier,et al.  Exact fully 3D Navier–Stokes solutions for benchmarking , 1994 .

[18]  Li-Bin Liu,et al.  A Robust Adaptive Grid Method for a System of Two Singularly Perturbed Convection-Diffusion Equations with Weak Coupling , 2014, J. Sci. Comput..

[19]  O. Pironneau,et al.  Some notes on periodic Beltrami fields in Cartesian geometry , 1991 .

[20]  Ekkehard Ramm,et al.  A three-level finite element method for the instationary incompressible Navier?Stokes equations , 2004 .

[21]  Robert D. Moser,et al.  Direct Simulation of a Self-Similar Turbulent Mixing Layer , 1994 .

[22]  Marcel Lesieur,et al.  The mixing layer and its coherence examined from the point of view of two-dimensional turbulence , 1988, Journal of Fluid Mechanics.

[23]  Erik Burman,et al.  Stabilized finite element methods for the generalized Oseen problem , 2007 .

[24]  Petr Knobloch,et al.  Local projection stabilization for advection--diffusion--reaction problems: One-level vs. two-level approach , 2009 .

[25]  Gabriel R. Barrenechea,et al.  A local projection stabilization finite element method with nonlinear crosswind diffusion for convection-diffusion-reaction equations , 2012 .

[26]  Christine Bernardi,et al.  Discr'etisations variationnelles de probl`emes aux limites elliptiques , 2004 .

[27]  Roger Lewandowski,et al.  Mathematical and Numerical Foundations of Turbulence Models and Applications , 2014 .

[28]  Frédéric Hecht,et al.  New development in freefem++ , 2012, J. Num. Math..

[29]  Vivette Girault,et al.  A high order term-by-term stabilization solver for incompressible flow problems , 2013 .

[30]  Gunar Matthies,et al.  A UNIFIED CONVERGENCE ANALYSIS FOR LOCAL PROJECTION STABILISATIONS APPLIED TO THE OSEEN PROBLEM , 2007 .

[31]  P. Wesseling,et al.  Local Grid Refinement in Large-Eddy Simulation , 1997 .

[32]  Roland Becker,et al.  A Two-Level Stabilization Scheme for the Navier-Stokes Equations , 2004 .

[33]  R. Codina,et al.  Time dependent subscales in the stabilized finite element approximation of incompressible flow problems , 2007 .

[34]  Macarena Gómez Mármol,et al.  Numerical analysis of a finite element projection-based VMS turbulence model with wall laws , 2015 .

[35]  Tomás Chacón Rebollo A term by term stabilization algorithm for finite element solution of incompressible flow problems , 1998 .

[36]  Erik Burman,et al.  Robust error estimates for stabilized finite element approximations of the two dimensional Navier–Stokes’ equations at high Reynolds number , 2015 .

[37]  Macarena Gómez Mármol,et al.  Finite Element Approximation of an Unsteady Projection-Based VMS Turbulence Model with Wall Laws , 2015 .

[38]  R. Codina A stabilized finite element method for generalized stationary incompressible flows , 2001 .

[39]  Volker Gravemeier,et al.  The variational multiscale method for laminar and turbulent flow , 2006 .

[40]  Michael Griebel,et al.  Adaptive Wavelet Solvers for the Unsteady Incompressible Navier-Stokes Equations , 2000 .

[41]  Daniel Arndt,et al.  Local projection FEM stabilization for the time‐dependent incompressible Navier–Stokes problem , 2015 .

[42]  Petr Knobloch A Generalization of the Local Projection Stabilization for Convection-Diffusion-Reaction Equations , 2010, SIAM J. Numer. Anal..

[43]  Daniel Arndt,et al.  Local projection stabilization for the Oseen problem , 2016 .

[44]  A. Michalke,et al.  On the inviscid instability of the hyperbolictangent velocity profile , 1964, Journal of Fluid Mechanics.

[45]  Frédéric Hecht,et al.  Numerical approximation of the Smagorinsky turbulence model applied to the primitive equations of the ocean , 2014, Math. Comput. Simul..

[46]  A. Roshko,et al.  On density effects and large structure in turbulent mixing layers , 1974, Journal of Fluid Mechanics.

[47]  Erik Burman,et al.  Local Projection Stabilization for the Oseen Problem and its Interpretation as a Variational Multiscale Method , 2006, SIAM J. Numer. Anal..

[48]  Ekkehard Ramm,et al.  Large eddy simulation of turbulent incompressible flows by a three‐level finite element method , 2005 .

[49]  M. Stynes,et al.  Robust Numerical Methods for Singularly Perturbed Differential Equations: Convection-Diffusion-Reaction and Flow Problems , 1996 .

[50]  Cornelius O. Horgan,et al.  Korn's Inequalities and Their Applications in Continuum Mechanics , 1995, SIAM Rev..

[51]  Volker John An assessment of two models for the subgrid scale tensor in the rational LES model , 2005 .

[52]  Giovanni P. Galdi,et al.  An Introduction to the Navier-Stokes Initial-Boundary Value Problem , 2000 .