Multiscale Representation Learning of Graph Data With Node Affinity

[1]  Ilya Safro,et al.  Multilevel algorithms for linear ordering problems , 2009, JEAL.

[2]  Bernhard Schölkopf,et al.  Cluster Kernels for Semi-Supervised Learning , 2002, NIPS.

[3]  Xavier Bresson,et al.  CayleyNets: Graph Convolutional Neural Networks With Complex Rational Spectral Filters , 2017, IEEE Transactions on Signal Processing.

[4]  Mathias Niepert,et al.  Learning Convolutional Neural Networks for Graphs , 2016, ICML.

[5]  Samy Bengio,et al.  Order Matters: Sequence to sequence for sets , 2015, ICLR.

[6]  Pietro Lio',et al.  Clique pooling for graph classification , 2019, ArXiv.

[7]  Xindong Wu,et al.  AAANE: Attention-based Adversarial Autoencoder for Multi-scale Network Embedding , 2018, PAKDD.

[8]  Pierre Vandergheynst,et al.  Graph Signal Processing: Overview, Challenges, and Applications , 2017, Proceedings of the IEEE.

[9]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[10]  J. Leydold,et al.  Laplacian eigenvectors of graphs : Perron-Frobenius and Faber-Krahn type theorems , 2007 .

[11]  Kaspar Riesen,et al.  IAM Graph Database Repository for Graph Based Pattern Recognition and Machine Learning , 2008, SSPR/SPR.

[12]  Joan Bruna,et al.  Spectral Networks and Locally Connected Networks on Graphs , 2013, ICLR.

[13]  Ken-ichi Kawarabayashi,et al.  Representation Learning on Graphs with Jumping Knowledge Networks , 2018, ICML.

[14]  Jure Leskovec,et al.  Inductive Representation Learning on Large Graphs , 2017, NIPS.

[15]  Pietro Liò,et al.  Graph Attention Networks , 2017, ICLR.

[16]  George Karypis,et al.  Comparison of descriptor spaces for chemical compound retrieval and classification , 2006, Sixth International Conference on Data Mining (ICDM'06).

[17]  Pascal Frossard,et al.  The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains , 2012, IEEE Signal Processing Magazine.

[18]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[19]  Pierre Vandergheynst,et al.  Geometric Deep Learning: Going beyond Euclidean data , 2016, IEEE Signal Process. Mag..

[20]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[21]  P. Dobson,et al.  Distinguishing enzyme structures from non-enzymes without alignments. , 2003, Journal of molecular biology.

[22]  Charu C. Aggarwal,et al.  Graph Convolutional Networks with EigenPooling , 2019, KDD.

[23]  Yue Wang,et al.  Dynamic Graph CNN for Learning on Point Clouds , 2018, ACM Trans. Graph..

[24]  Thomas Brox,et al.  Striving for Simplicity: The All Convolutional Net , 2014, ICLR.

[25]  Zhiyuan Liu,et al.  Fast Network Embedding Enhancement via High Order Proximity Approximation , 2017, IJCAI.

[26]  Ruosong Wang,et al.  Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels , 2019, NeurIPS.

[27]  Alán Aspuru-Guzik,et al.  Convolutional Networks on Graphs for Learning Molecular Fingerprints , 2015, NIPS.

[28]  J. Leskovec,et al.  Open Graph Benchmark: Datasets for Machine Learning on Graphs , 2020, NeurIPS.

[29]  Antonio G. Marques,et al.  Convolutional Neural Network Architectures for Signals Supported on Graphs , 2018, IEEE Transactions on Signal Processing.

[30]  Jimmy Ba,et al.  Adam: A Method for Stochastic Optimization , 2014, ICLR.

[31]  Nikos Komodakis,et al.  Dynamic Edge-Conditioned Filters in Convolutional Neural Networks on Graphs , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[32]  Shuiwang Ji,et al.  Graph U-Nets , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[33]  Pascal Frossard,et al.  Graph-based Isometry Invariant Representation Learning , 2017, ICML.

[34]  Steven Skiena,et al.  Don't Walk, Skip!: Online Learning of Multi-scale Network Embeddings , 2016, ASONAM.

[35]  Jaewoo Kang,et al.  Self-Attention Graph Pooling , 2019, ICML.

[36]  Xing Gao,et al.  iPool - Information-based Pooling in Hierarchical Graph Neural Networks , 2019, ArXiv.

[37]  Jure Leskovec,et al.  How Powerful are Graph Neural Networks? , 2018, ICLR.

[38]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[39]  SafroIlya,et al.  Multilevel algorithms for linear ordering problems , 2009 .

[40]  Antonio Ortega,et al.  Submitted to Ieee Transactions on Signal Processing 1 Efficient Sampling Set Selection for Bandlimited Graph Signals Using Graph Spectral Proxies , 2022 .

[41]  Ramón Fernández Astudillo,et al.  From Softmax to Sparsemax: A Sparse Model of Attention and Multi-Label Classification , 2016, ICML.

[42]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[43]  Samuel S. Schoenholz,et al.  Neural Message Passing for Quantum Chemistry , 2017, ICML.

[44]  Jure Leskovec,et al.  Position-aware Graph Neural Networks , 2019, ICML.

[45]  Xavier Bresson,et al.  Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering , 2016, NIPS.

[46]  Steven Skiena,et al.  HARP: Hierarchical Representation Learning for Networks , 2017, AAAI.

[47]  Xiao-Ming Wu,et al.  Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning , 2018, AAAI.

[48]  Jianming Lv,et al.  ACE: Ant Colony Based Multi-Level Network Embedding for Hierarchical Graph Representation Learning , 2019, IEEE Access.

[49]  Victor Y. Pan,et al.  The complexity of the matrix eigenproblem , 1999, STOC '99.

[50]  Prateek Yadav,et al.  Confidence-based Graph Convolutional Networks for Semi-Supervised Learning , 2019, AISTATS.

[51]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[52]  Yixin Chen,et al.  An End-to-End Deep Learning Architecture for Graph Classification , 2018, AAAI.

[53]  Inderjit S. Dhillon,et al.  Weighted Graph Cuts without Eigenvectors A Multilevel Approach , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[54]  Jure Leskovec,et al.  Hierarchical Graph Representation Learning with Differentiable Pooling , 2018, NeurIPS.