Two characterizations of sufficient matrices

Abstract Two characterizations are given for the class of sufficient matrices defined by Cottle, Pang, and Venkateswaran. The first is a direct translation of the definition into linear-programming terms. The second can be thought of as a generalization of a theorem of T.D. Parsons on P -matrices.

[1]  M. Fiedler,et al.  Some generalizations of positive definiteness and monotonicity , 1966 .

[2]  B. Eaves The Linear Complementarity Problem , 1971 .

[3]  A. Ingleton A Probelm in Linear Inequalities , 1966 .

[4]  Richard W. Cottle,et al.  The principal pivoting method revisited , 1990, Math. Program..

[5]  D. Gale,et al.  The Jacobian matrix and global univalence of mappings , 1965 .

[6]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[7]  Richard W. Cottle,et al.  On the uniqueness of solutions to linear complementarity problems , 1983, Math. Program..

[8]  A. Ingleton The Linear Complementarity Problem , 1970 .

[9]  Richard W. Cottle,et al.  On classes of copositive matrices , 1970 .

[10]  J. Pang Iterative descent algorithms for a row sufficient linear complementary problem , 1991 .

[11]  Nimrod Megiddo,et al.  A Unified Approach to Interior Point Algorithms for Linear Complementarity Problems , 1991, Lecture Notes in Computer Science.

[12]  Richard W. Cottle,et al.  Least-Index Resolution of Degeneracy in Linear Complementarity Problems with Sufficient Matrices , 1979, SIAM J. Matrix Anal. Appl..

[13]  Katta G. Murty,et al.  Linear complementarity, linear and nonlinear programming , 1988 .

[14]  C. E. Lemke,et al.  Bimatrix Equilibrium Points and Mathematical Programming , 1965 .

[15]  R. Cottle Manifestations of the Schur complement , 1974 .

[16]  R. Cottle,et al.  Sufficient matrices and the linear complementarity problem , 1989 .

[17]  G. Dantzig,et al.  COMPLEMENTARY PIVOT THEORY OF MATHEMATICAL PROGRAMMING , 1968 .