Isogeometric analysis with strong multipatch C1-coupling

Abstract C 1 continuity is desirable for solving 4th order partial differential equations such as those appearing in Kirchhoff–Love shell models ( Kiendl et al., 2009 ) or Cahn–Hilliard phase field applications ( Gomez et al., 2008 ). Isogeometric analysis provides a useful approach to obtaining approximations with high-smoothness. However, when working with complex geometric domains composed of multiple patches, it is a challenging task to achieve global continuity beyond C 0 . In particular, enforcing C 1 continuity on certain domains can result in “ C 1 -locking” due to the extra constraints applied to the approximation space ( Collin et al., 2016 ). In this contribution, a general framework for coupling surfaces in space is presented as well as an approach to overcome C 1 -locking by local degree elevation along the patch interfaces. This allows the modeling of solutions to 4th order PDEs on complex geometric surfaces, provided that the given patches have G 1 continuity. Numerical studies are conducted for problems involving linear elasticity, Kirchhoff–Love shells and Cahn–Hilliard equation.

[1]  Roland Wüchner,et al.  Isogeometric analysis of trimmed NURBS geometries , 2012 .

[2]  John A. Evans,et al.  Isogeometric boundary element analysis using unstructured T-splines , 2013 .

[3]  Thomas J. R. Hughes,et al.  Extended Truncated Hierarchical Catmull–Clark Subdivision , 2016 .

[4]  Mario Kapl,et al.  Dimension and basis construction for analysis-suitable G1 two-patch parameterizations , 2017, Comput. Aided Geom. Des..

[5]  Hendrik Speleers,et al.  Multi-degree smooth polar splines: A framework for geometric modeling and isogeometric analysis , 2017 .

[6]  Jörg Peters,et al.  Generalizing bicubic splines for modeling and IGA with irregular layout , 2016, Comput. Aided Des..

[7]  T. Coleman,et al.  The null space problem I. complexity , 1986 .

[8]  Jörg Peters,et al.  C1 finite elements on non-tensor-product 2d and 3d manifolds , 2016, Appl. Math. Comput..

[9]  Bert Jüttler,et al.  IETI – Isogeometric Tearing and Interconnecting , 2012, Computer methods in applied mechanics and engineering.

[10]  Martin Ruess,et al.  Nitsche’s method for a coupling of isogeometric thin shells and blended shell structures , 2015 .

[11]  M. Ortiz,et al.  Subdivision surfaces: a new paradigm for thin‐shell finite‐element analysis , 2000 .

[12]  John A. Evans,et al.  Isogeometric analysis using T-splines , 2010 .

[13]  Thomas J. R. Hughes,et al.  Truncated T-splines: Fundamentals and methods , 2017 .

[14]  James E. Cobb Tiling the sphere with rational bezier patches , 1994 .

[15]  Peter Betsch,et al.  Isogeometric analysis and domain decomposition methods , 2012 .

[16]  John A. Evans,et al.  Isogeometric unstructured tetrahedral and mixed-element Bernstein–Bézier discretizations , 2017 .

[17]  Mario Kapl,et al.  Space of C2-smooth geometrically continuous isogeometric functions on planar multi-patch geometries: Dimension and numerical experiments , 2017, Comput. Math. Appl..

[18]  Roland Wüchner,et al.  Isogeometric shell analysis with Kirchhoff–Love elements , 2009 .

[19]  Michel Bercovier,et al.  Smooth Bézier Surfaces over Unstructured Quadrilateral Meshes , 2014, 1412.1125.

[20]  Barbara Wohlmuth,et al.  Isogeometric mortar methods , 2014, 1407.8313.

[21]  Bernard Mourrain,et al.  Dimension and bases for geometrically continuous splines on surfaces of arbitrary topology , 2016, Comput. Aided Geom. Des..

[22]  Mario Kapl,et al.  Space of C2-smooth geometrically continuous isogeometric functions on two-patch geometries , 2017, Comput. Math. Appl..

[23]  Mario Kapl,et al.  Isogeometric analysis with geometrically continuous functions on planar multi-patch geometries , 2017 .

[24]  I. Babuska,et al.  Stable Generalized Finite Element Method (SGFEM) , 2011, 1104.0960.

[25]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[26]  Fehmi Cirak,et al.  Isogeometric analysis using manifold-based smooth basis functions , 2016, ArXiv.

[27]  H. Nguyen-Xuan,et al.  An extended isogeometric thin shell analysis based on Kirchhoff-Love theory , 2015 .

[28]  Giancarlo Sangalli,et al.  Analysis-suitable G1 multi-patch parametrizations for C1 isogeometric spaces , 2016, Comput. Aided Geom. Des..

[29]  Mario Kapl,et al.  Isogeometric analysis with geometrically continuous functions on two-patch geometries , 2015, Comput. Math. Appl..

[30]  Roland Wüchner,et al.  A Nitsche‐type formulation and comparison of the most common domain decomposition methods in isogeometric analysis , 2014 .

[31]  Bert Jüttler,et al.  On numerical integration in isogeometric subdivision methods for PDEs on surfaces , 2016 .

[32]  T. Hughes,et al.  Solid T-spline construction from boundary representations for genus-zero geometry , 2012 .

[33]  Alfio Quarteroni,et al.  Isogeometric Analysis for second order Partial Differential Equations on surfaces , 2015 .

[34]  Josef Hoschek,et al.  Fundamentals of computer aided geometric design , 1996 .

[35]  Vinh Phu Nguyen,et al.  Nitsche’s method for two and three dimensional NURBS patch coupling , 2013, 1308.0802.

[36]  T. Hughes,et al.  Isogeometric analysis of the Cahn–Hilliard phase-field model , 2008 .

[37]  H. Nguyen-Xuan,et al.  Isogeometric analysis of large-deformation thin shells using RHT-splines for multiple-patch coupling , 2017 .

[38]  Xiaoping Qian,et al.  Isogeometric analysis with Bézier tetrahedra , 2017 .

[39]  B. Simeon,et al.  Adaptive isogeometric analysis by local h-refinement with T-splines , 2010 .

[40]  Sven Klinkel,et al.  The weak substitution method – an application of the mortar method for patch coupling in NURBS‐based isogeometric analysis , 2015 .

[41]  T. Hughes,et al.  Smooth cubic spline spaces on unstructured quadrilateral meshes with particular emphasis on extraordinary points: Geometric design and isogeometric analysis considerations , 2017 .

[42]  Jörg Peters,et al.  Refinable C1 spline elements for irregular quad layout , 2016, Comput. Aided Geom. Des..

[43]  André Galligo,et al.  Hermite type Spline spaces over rectangular meshes with complex topological structures , 2017 .

[44]  Yuri Bazilevs,et al.  The bending strip method for isogeometric analysis of Kirchhoff–Love shell structures comprised of multiple patches , 2010 .

[45]  J. M. Cascón,et al.  A new approach to solid modeling with trivariate T-splines based on mesh optimization , 2011 .