Minimization of out-of-plane losses of photonic crystal membranes

We study in detail out-of-plane losses of photonic crystal membranes located at optical distance above a substrate by using approximate and rigorous methods. We reveal a resonance mechanism in the air gap, separating membrane and substrate being responsible for a nonmonotonic loss dependence on wavelength and gap width. We show that by taking advantage of this effect and by carefully adjusting the gap width, the losses can be even lesser than those for an isolated membrane.

[1]  Shanhui Fan,et al.  Absorbing boundary conditions for FDTD simulations of photonic crystal waveguides , 1999 .

[2]  Segolene Olivier,et al.  Coupled-mode theory and propagation losses in photonic crystal waveguides. , 2003, Optics express.

[3]  Thomas Pertsch,et al.  Slow-light enhanced collinear second-harmonic generation in two-dimensional photonic crystals , 2008 .

[4]  M. Zussy,et al.  Surface-emitting microlaser combining two-dimensional photonic crystal membrane and vertical Bragg mirror , 2006 .

[5]  M. Koshiba,et al.  High-performance absorbing boundary conditions for photonic crystal waveguide simulations , 2001, IEEE Microwave and Wireless Components Letters.

[6]  Masaya Notomi,et al.  All-optical on-chip bit memory based on ultra high Q InGaAsP photonic crystal. , 2008, Optics express.

[7]  T. Koch,et al.  Antiresonant reflecting optical waveguides in SiO2‐Si multilayer structures , 1986 .

[8]  S. Latreche,et al.  Photonic band gap grating in He+-implanted lithium niobate waveguides , 2006 .

[9]  Min Qiu,et al.  Band gap effects in asymmetric photonic crystal slabs , 2002 .

[10]  Kazuaki Sakoda,et al.  Nearly free-photon approximation for two-dimensional photonic crystal slabs , 2001 .

[11]  L. Andreani,et al.  Intrinsic diffraction losses in photonic crystal waveguides with line defects , 2003 .

[12]  The superprism effect in lithium niobate photonic crystals for ultra-fast, ultra-compact electro-optical switching , 2007 .

[13]  Masaya Notomi,et al.  Optical bistable switching action of Si high-Q photonic-crystal nanocavities. , 2005, Optics express.

[14]  M. Gerken,et al.  Tunable superprism effect in photonic crystals , 2007 .

[15]  Sakoda,et al.  Sum-frequency generation in a two-dimensional photonic lattice. , 1996, Physical review. B, Condensed matter.

[16]  Bill Corcoran,et al.  Slow light enhancement of nonlinear effects in silicon engineered photonic crystal waveguides. , 2009, Optics express.

[17]  Pochi Yeh,et al.  Electromagnetic propagation in birefringent layered media , 1979 .

[18]  Romuald Houdré,et al.  Minimization of out-of-plane losses in planar photonic crystals by optimizing the vertical waveguide , 2004 .

[19]  Nikolaj Moll,et al.  Comparison of three-dimensional photonic crystal slab waveguides with two-dimensional photonic crystal waveguides: Efficient butt coupling into these photonic crystal waveguides , 2003 .

[20]  K. Busch,et al.  Nonlinear three-wave interaction in photonic crystals , 2005 .

[21]  W. Heinrich,et al.  Improved finite-difference formulation in frequency domain for three-dimensional scattering problems , 1992 .

[22]  K. Asakawa,et al.  Confined band gap in an air-bridge type of two-dimensional AlGaAs photonic crystal. , 2001, Physical review letters.

[23]  M. Notomi,et al.  Extremely large group-velocity dispersion of line-defect waveguides in photonic crystal slabs. , 2001, Physical review letters.

[24]  Lucio Claudio Andreani,et al.  Gap maps, diffraction losses, and exciton–polaritons in photonic crystal slabs , 2004 .

[25]  T. Krauss,et al.  Real-space observation of ultraslow light in photonic crystal waveguides. , 2005, Physical review letters.

[26]  Leslie A. Kolodziejski,et al.  slab waveguides , 2003 .

[27]  U. Peschel,et al.  Reciprocity theorem and perturbation theory for photonic crystal waveguides. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[28]  X. Letartre,et al.  Room-temperature InAs/InP Quantum Dots laser operation based on heterogeneous "2.5 D" Photonic Crystal. , 2006, Optics express.

[29]  Oskar Painter,et al.  Nonlinear response of silicon photonic crystal microresonators excited via an integrated waveguide and fiber taper. , 2005, Optics express.

[30]  H. Chong,et al.  Comprehensive FDTD modelling of photonic crystal waveguide components. , 2004, Optics express.

[31]  E. Kley,et al.  Dispersion properties of photonic crystal waveguides with a low in-plane index contrast , 2006 .

[32]  Shanhui Fan,et al.  GaN-based two-dimensional surface-emitting photonic crystal lasers with AlN∕GaN distributed Bragg reflector , 2008 .

[33]  Henri Benisty,et al.  Mini stopbands of a one dimensional system: the channel waveguide in a two-dimensional photonic crystal , 2001 .

[34]  N. Courjal,et al.  Nanostructuring lithium niobate substrates by focused ion beam milling , 2005, 0801.4201.

[35]  F. Baida,et al.  Optical far-field and near-field observations of the strong angular dispersion in a lithium niobate photonic crystal superprism designed for double (passive and active) demultiplexer applications , 2008 .

[36]  Makoto Okano,et al.  Wider bandwidth with high transmission through waveguide bends in two-dimensional photonic crystal slabs , 2002 .

[37]  T. Baehr‐Jones,et al.  Photonic crystal waveguide-mode orthogonality conditions and computation of intrinsic waveguide losses. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[38]  Toshihiko Baba,et al.  Wideband and low dispersion slow light by chirped photonic crystal coupled waveguide. , 2005, Optics express.

[39]  Steven G. Johnson,et al.  Guided modes in photonic crystal slabs , 1999 .

[40]  J. R. Wendt,et al.  Three-dimensional control of light in a two-dimensional photonic crystal slab , 2022 .

[41]  D. Felbacq,et al.  All-angle phase matching condition and backward second-harmonic localization in nonlinear photonic crystals. , 2007, Physical review letters.

[42]  Kim,et al.  Two-dimensional photonic band-Gap defect mode laser , 1999, Science.

[43]  Philippe Lalanne,et al.  Electromagnetic analysis of photonic crystal waveguides operating above the light cone , 2002 .

[44]  Xiaodong Yang,et al.  Observation of femtojoule optical bistability involving fano resonances in high-Q/Vm silicon photonic crystal nanocavities , 2007 .

[45]  Steven G. Johnson,et al.  Waveguide branches in photonic crystals , 2001 .

[46]  G. R. Hadley,et al.  Out-of-plane losses of line-defect photonic crystal waveguides , 2002, IEEE Photonics Technology Letters.

[47]  Kazuaki Sakoda,et al.  Dispersion relation and optical transmittance of a hexagonal photonic crystal slab , 2001 .

[48]  E. Kley,et al.  Ion beam enhanced etching of LiNbO3 , 2006 .

[49]  Andreas Tünnermann,et al.  High transmission and single-mode operation in low-index-contrast photonic crystal waveguide devices , 2004 .

[50]  D. Gerace,et al.  Photonic-crystal slabs with a triangular lattice of triangular holes investigated using a guided-mode expansion method , 2006, 0706.0395.

[51]  Andreas Tünnermann,et al.  Diffractionless propagation of light in a low-index photonic-crystal film , 2004 .

[52]  Dan Dalacu,et al.  Experimental demonstration of second-order processes in photonic crystal microcavities at submilliwatt excitation powers , 2007 .