On Local Region Models and the Statistical Interpretation of the Piecewise Smooth Mumford-shah Functional

The Mumford-Shah functional is a general and quite popular variational model for image segmentation. In particular, it provides the possibility to represent regions by smooth approximations. In this paper, we derive a statistical interpretation of the full (piecewise smooth) Mumford-Shah functional by relating it to recent works on local region statistics. Moreover, we show that this statistical interpretation comes along with several implications. Firstly, one can derive extended versions of the Mumford-Shah functional including more general distribution models. Secondly, it leads to faster implementations. Finally, thanks to the analytical expression of the smooth approximation via Gaussian convolution, the coordinate descent can be replaced by a true gradient descent.

[1]  Thomas Brox,et al.  A TV flow based local scale estimate and its application to texture discrimination , 2006, J. Vis. Commun. Image Represent..

[2]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[3]  Rachid Deriche,et al.  A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape , 2007, International Journal of Computer Vision.

[4]  John W. Fisher,et al.  Submitted to Ieee Transactions on Image Processing a Nonparametric Statistical Method for Image Segmentation Using Information Theory and Curve Evolution , 2022 .

[5]  R. Deriche,et al.  Regularization and Scale Space , 1994 .

[6]  Joachim M. Buhmann,et al.  On Spatial Quantization of Color Images , 1998, ECCV.

[7]  Knut-Andreas Lie,et al.  Scale Space and Variational Methods in Computer Vision, Second International Conference, SSVM 2009, Voss, Norway, June 1-5, 2009. Proceedings , 2009, SSVM.

[8]  Christoph Schnörr,et al.  Natural Image Statistics for Natural Image Segmentation , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[9]  Anthony J. Yezzi,et al.  Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification , 2001, IEEE Trans. Image Process..

[10]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[11]  Thomas Brox,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik Level Set Segmentation with Multiple Regions Level Set Segmentation with Multiple Regions , 2022 .

[12]  William M. Wells,et al.  Medical Image Computing and Computer-Assisted Intervention — MICCAI’98 , 1998, Lecture Notes in Computer Science.

[13]  V. Caselles,et al.  A geometric model for active contours in image processing , 1993 .

[14]  W. Lenz,et al.  Beitrag zum Verständnis der magnetischen Erscheinungen in festen Körpern , 1920 .

[15]  Théodore Papadopoulo,et al.  Efficient Segmentation of Piecewise Smooth Images , 2007, SSVM.

[16]  Olivier D. Faugeras,et al.  Image Segmentation Using Active Contours: Calculus of Variations or Shape Gradients? , 2003, SIAM J. Appl. Math..

[17]  Nikos Paragios,et al.  Border Detection on Short Axis Echocardiographic Views Using a Region Based Ellipse-Driven Framework , 2004, MICCAI.

[18]  E. Parzen On Estimation of a Probability Density Function and Mode , 1962 .

[19]  Daniel Cremers,et al.  Efficient Kernel Density Estimation of Shape and Intensity Priors for Level Set Segmentation , 2005, MICCAI.

[20]  Rachid Deriche,et al.  Geodesic Active Regions: A New Framework to Deal with Frame Partition Problems in Computer Vision , 2002, J. Vis. Commun. Image Represent..

[21]  Daniel Cremers,et al.  On the Statistical Interpretation of the Piecewise Smooth Mumford-Shah Functional , 2007, SSVM.

[22]  Mila Nikolova,et al.  Algorithms for Finding Global Minimizers of Image Segmentation and Denoising Models , 2006, SIAM J. Appl. Math..

[23]  L. Ambrosio,et al.  Approximation of functional depending on jumps by elliptic functional via t-convergence , 1990 .

[24]  Simon L. Peyton Jones,et al.  Scrap Your Boilerplate , 2003, APLAS.

[25]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[26]  Rachid Deriche,et al.  Regularization, Scale-Space, and Edge Detection Filters , 1996, Journal of Mathematical Imaging and Vision.

[27]  Daniel Cremers,et al.  Efficient Nonlocal Means for Denoising of Textural Patterns , 2008, IEEE Transactions on Image Processing.

[28]  Alan L. Yuille,et al.  Region Competition: Unifying Snakes, Region Growing, and Bayes/MDL for Multiband Image Segmentation , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[29]  Norberto M. Grzywacz,et al.  A computational theory for the perception of coherent visual motion , 1988, Nature.

[30]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[31]  Rachid Deriche,et al.  Fast algorithms for low-level vision , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[32]  Bodo Rosenhahn,et al.  Three-Dimensional Shape Knowledge for Joint Image Segmentation and Pose Estimation , 2005, DAGM-Symposium.

[33]  Jean-Michel Morel,et al.  Variational methods in image segmentation , 1995 .

[34]  Rachid Deriche,et al.  Adaptive Segmentation of Vector Valued Images , 2003 .

[35]  E. Ising Beitrag zur Theorie des Ferromagnetismus , 1925 .

[36]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[37]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[38]  Daniel Cremers,et al.  Diffusion Snakes: Introducing Statistical Shape Knowledge into the Mumford-Shah Functional , 2002, International Journal of Computer Vision.

[39]  Andrew Blake,et al.  Visual Reconstruction , 1987, Deep Learning for EEG-Based Brain–Computer Interfaces.

[40]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[41]  Jens E. Wolff,et al.  The MyView System: Tackling the Interface Problem , 1997 .