Using residual areas for geometrically nonlinear structural analysis

Abstract Incremental–iterative methods are widely used for tracing the equilibrium paths of structures. To determine the nonlinear structural response, an iteration process is required. In this paper, some residual areas are employed for the base of iteration steps. By setting each area to zero, and minimizing its perimeter separately, some new constraint equations can be achieved. After developing the related formulations, several geometric nonlinear analyses of frames, shell and trusses are performed to evaluate the robustness of the suggested methods. Findings prove the high capability of the authors׳ first scheme compared to other new proposed methods and cylindrical arc-length technique. Additionally, the capacity of each strategy in passing the limit points is assessed.

[1]  A. Chan,et al.  Further development of the reduced basis method for geometric nonlinear analysis , 1987 .

[2]  Hamed Saffari,et al.  Nonlinear Analysis of Space Trusses Using Modified Normal Flow Algorithm , 2008 .

[3]  J. L. Meek,et al.  Geometrically nonlinear analysis of space frames by an incremental iterative technique , 1984 .

[4]  Gouri Dhatt,et al.  Incremental displacement algorithms for nonlinear problems , 1979 .

[5]  Rasim Temür,et al.  Analysis of trusses by total potential optimization method coupled with harmony search , 2013 .

[6]  W. F. Chen,et al.  Improved nonlinear plastic hinge analysis of space frame structures , 2000 .

[7]  Manolis Papadrakakis,et al.  Post-buckling analysis of spatial structures by vector iteration methods , 1981 .

[8]  Hsiao Kuo-Mo,et al.  Nonlinear analysis of general shell structures by flat triangular shell element , 1987 .

[9]  F. W. Williams,et al.  AN APPROACH TO THE NON-LINEAR BEHAVIOUR OF THE MEMBERS OF A RIGID JOINTED PLANE FRAMEWORK WITH FINITE DEFLECTIONS , 1964 .

[10]  Yusuf Cengiz Toklu,et al.  Nonlinear analysis of trusses through energy minimization , 2004 .

[11]  M. Rezaiee-Pajand,et al.  Comprehensive evaluation of structural geometrical nonlinear solution techniques Part I: Formulation and characteristics of the methods , 2013 .

[12]  N. E. Shanmugam,et al.  Advanced analysis and design of spatial structures , 1997 .

[13]  Javad Alamatian,et al.  Automatic DR Structural Analysis of Snap-Through and Snap-Back Using Optimized Load Increments , 2011 .

[14]  Javad Alamatian,et al.  Numerical time integrationfor dynamic analysis using a newhigher order predictor-corrector method , 2008 .

[15]  E. Riks An incremental approach to the solution of snapping and buckling problems , 1979 .

[16]  Mgd Marc Geers,et al.  Enhanced solution control for physically and geometrically non‐linear problems. Part II—comparative performance analysis , 1999 .

[17]  M. Tatar,et al.  Some Geometrical Bases for Incremental-Iterative Methods , 2009 .

[18]  Hamed Saffari,et al.  A NEW APPROACH FOR CONVERGENCE ACCELERATION OF ITERATIVE METHODS IN STRUCTURAL ANALYSIS , 2013 .

[19]  G. Powell,et al.  Improved iteration strategy for nonlinear structures , 1981 .

[20]  George E. Blandford,et al.  Work-increment-control method for non-linear analysis , 1993 .

[21]  Siu-Lai Chan Geometric and material non‐linear analysis of beam‐columns and frames using the minimum residual displacement method , 1988 .

[22]  Mohammad Rezaiee-Pajand,et al.  Nonlinear dynamic structural analysis using dynamic relaxation with zero damping , 2011 .

[23]  Salvatore Sergio Ligaro,et al.  Large displacement analysis of elastic pyramidal trusses , 2006 .

[24]  M. Crisfield A FAST INCREMENTAL/ITERATIVE SOLUTION PROCEDURE THAT HANDLES "SNAP-THROUGH" , 1981 .

[25]  K. Y. Sze,et al.  Popular benchmark problems for geometric nonlinear analysis of shells , 2004 .

[26]  Siegfried F. Stiemer,et al.  Improved arc length orthogonality methods for nonlinear finite element analysis , 1987 .

[27]  E. Riks The Application of Newton's Method to the Problem of Elastic Stability , 1972 .

[28]  R. D. Wood,et al.  GEOMETRICALLY NONLINEAR FINITE ELEMENT ANALYSIS OF BEAMS, FRAMES, ARCHES AND AXISYMMETRIC SHELLS , 1977 .

[29]  Karan S. Surana,et al.  Geometrically non-linear formulation for the three dimensional solid-shell transition finite elements , 1982 .

[30]  Dinar Camotim,et al.  On the arc-length and other quadratic control methods: Established, less known and new implementation procedures , 2008 .

[31]  M. Rezaiee-Pajand,et al.  Comprehensive evaluation of structural geometrical nonlinear solution techniques Part II: Comparing efficiencies of the methods , 2013 .

[32]  A. B. Sabir,et al.  The applications of finite elements to large deflection geometrically nonlinear behaviour of cylindrical shells , 1972 .

[33]  G. Wempner Discrete approximations related to nonlinear theories of solids , 1971 .

[34]  Javad Alamatian,et al.  Timestep Selection for Dynamic Relaxation Method , 2012 .

[35]  S. Ligaro,et al.  A self-adaptive strategy for uniformly accurate tracing of the equilibrium paths of elastic reticulated structures , 1999 .

[36]  I. Mansouri,et al.  An efficient nonlinear analysis of 2D frames using a Newton-like technique , 2012 .

[37]  Iman Mansouri,et al.  Efficient Numerical Method in Second-Order Inelastic Analysis of Space Trusses , 2013, J. Comput. Civ. Eng..

[38]  C. L. Morgan,et al.  Continua and Discontinua , 1916 .

[39]  Satya N. Atluri,et al.  Instability analysis of space trusses using exact tangent-stiffness matrices☆ , 1985 .

[40]  Yeong-bin Yang,et al.  Solution method for nonlinear problems with multiple critical points , 1990 .

[41]  K. Bathe,et al.  ON THE AUTOMATIC SOLUTION OF NONLINEAR FINITE ELEMENT EQUATIONS , 1983 .

[42]  Ray W. Clough,et al.  Convergence Criteria for Iterative Processes , 1972 .

[43]  Ginevra Salerno,et al.  Finite element asymptotic analysis of slender elastic structures: A simple approach , 1992 .

[44]  Isaac Fried,et al.  Orthogonal trajectory accession to the nonlinear equilibrium curve , 1984 .

[45]  Iman Mansouri,et al.  Non-linear analysis of structures using two-point method , 2011 .