Space-Constrained Interval Selection

We study streaming algorithms for the interval selection problem: finding a maximum cardinality subset of disjoint intervals on the line. A deterministic 2-approximation streaming algorithm for this problem is developed, together with an algorithm for the special case of proper intervals, achieving improved approximation ratio of 3/2. We complement these upper bounds by proving that they are essentially the best possible in the streaming setting: It is shown that an approximation ratio of 2 − ε (or 3/2 − ε for proper intervals) cannot be achieved unless the space is linear in the input size. In passing, we also answer an open question of Adler and Azar (J. Scheduling 2003) regarding the space complexity of constant-competitive randomized preemptive online algorithms for the same problem.

[1]  Thomas Erlebach,et al.  An Improved Randomized On-Line Algorithm for a Weighted Interval Selection Problem , 2004, J. Sched..

[2]  Magnús M. Halldórsson,et al.  Streaming Algorithms for Independent Sets , 2010, ICALP.

[3]  Pankaj K. Agarwal,et al.  Streaming Algorithms for Extent Problems in High Dimensions , 2010, SODA '10.

[4]  S. Muthukrishnan,et al.  Data streams: algorithms and applications , 2005, SODA '03.

[5]  Ashwin Lall,et al.  A data streaming algorithm for estimating entropies of od flows , 2007, IMC '07.

[6]  Éva Tardos,et al.  Algorithm design , 2005 .

[7]  Pablo Pérez-Lantero,et al.  Interval selection in the streaming model , 2015, Theor. Comput. Sci..

[8]  Sandy Irani,et al.  Bounding the power of preemption in randomized scheduling , 1995, STOC '95.

[9]  Hadas Shachnai,et al.  Online Scheduling Intervals and t-Intervals , 2010 .

[10]  Sudipto Guha,et al.  Graph Sparsification in the Semi-streaming Model , 2009, ICALP.

[11]  Fanica Gavril,et al.  Algorithms for Minimum Coloring, Maximum Clique, Minimum Covering by Cliques, and Maximum Independent Set of a Chordal Graph , 1972, SIAM J. Comput..

[12]  Yossi Azar,et al.  Beating the Logarithmic Lower Bound: Randomized Preemptive Disjoint Paths and Call Control Algorithms , 1999, SODA '99.

[13]  Andrew McGregor,et al.  Finding Graph Matchings in Data Streams , 2005, APPROX-RANDOM.

[14]  Feifeng Zheng,et al.  Improved Randomized Online Scheduling of Unit Length Intervals and Jobs , 2008, WAOA.

[15]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[16]  Leah Epstein,et al.  Improved randomized results for the interval selection problem , 2010, Theor. Comput. Sci..

[17]  Amos Fiat,et al.  Competitive non-preemptive call control , 1994, SODA '94.

[18]  Yossi Azar,et al.  Buffer Management for Packets with Processing Times , 2015, ESA.

[19]  Adi Rosén,et al.  Space-Constrained Interval Selection , 2012, ICALP.

[20]  Leah Epstein,et al.  Improved Approximation Guarantees for Weighted Matching in the Semi-streaming Model , 2009, SIAM J. Discret. Math..

[21]  Hadas Shachnai,et al.  Online Selection of Intervals and t-Intervals , 2010, SWAT.

[22]  Noga Alon,et al.  The space complexity of approximating the frequency moments , 1996, STOC '96.

[23]  Richard J. Lipton,et al.  Online interval scheduling , 1994, SODA '94.

[24]  J. Ian Munro,et al.  Selection and sorting with limited storage , 1978, 19th Annual Symposium on Foundations of Computer Science (sfcs 1978).

[25]  Gerhard J. Woeginger,et al.  On-Line Scheduling of Jobs with Fixed Start and End Times , 1994, Theor. Comput. Sci..

[26]  Ronald L. Rivest,et al.  Introduction to Algorithms, third edition , 2009 .

[27]  Prabhakar Raghavan,et al.  Computing on data streams , 1999, External Memory Algorithms.

[28]  A. Kemper,et al.  On Graph Problems in a Semi-streaming Model , 2015 .

[29]  Joan Feigenbaum,et al.  Graph Distances in the Data-Stream Model , 2008, SIAM J. Comput..

[30]  Páll Melsted,et al.  KmerStream: Streaming algorithms for k-mer abundance estimation , 2014, bioRxiv.

[31]  Sandy Irani,et al.  Bounding the power of preemption in randomized scheduling , 1995, STOC '95.

[32]  Bjarni V. Halld KmerStream: streaming algorithms for k-mer abundance estimation , 2014 .

[33]  Alberto Marchetti-Spaccamela,et al.  On-line randomized call control revisited , 1998, SODA '98.