A max-stable process model for rainfall extremes at different accumulation durations

Abstract A common existing approach to modeling rainfall extremes employs a spatial Bayesian hierarchical model, where latent Gaussian processes are specified on distributional parameters in order to pool spatial information. The data are taken to be conditionally independent given the latent processes, and so spatial dependence arises only through this conditional structure. This methodology can be extended by incorporating an explicit max-stable dependence structure, which therefore produces more realistic spatial surfaces, and removes the assumption of conditional independence. We further extend the max-stable methodology to incorporate the joint modeling of rainfall data at different accumulation durations. We therefore pool information across both space and accumulation duration within a broad framework which includes an explicit specification of spatial dependence. Our model can be used to derive inferences at ungauged sites, and easily incorporates missing values. Our methodology is applied to a dataset of pluviometer records recorded at 182 meteorological stations located on the Central Coast of New South Wales, Australia. For each station, rainfall data are accumulated over 16 different durations ranging from 5 min to 7 days. The model is fitted using Markov chain Monte Carlo simulation, employing auxiliary variables so that exact Bayesian inference can be performed. We present estimated parameters and posterior inferences for isohyetal maps and intensity-duration-frequency curves at selected sites of interest, and compare our inferences with those derived from the standard latent variable model.

[1]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[2]  B. Shaby,et al.  Estimating Spatially Varying Severity Thresholds of a Forest Fire Danger Rating System Using Max-Stable Extreme-Event Modeling* , 2015 .

[3]  Stephan R. Sain,et al.  A comparison study of extreme precipitation from six different regional climate models via spatial hierarchical modeling , 2010 .

[4]  Brian J Reich,et al.  A HIERARCHICAL MAX-STABLE SPATIAL MODEL FOR EXTREME PRECIPITATION. , 2013, The annals of applied statistics.

[5]  C. Gaetan,et al.  A hierarchical model for the analysis of spatial rainfall extremes , 2007 .

[6]  J. R. Wallis,et al.  Regional Frequency Analysis: An Approach Based on L-Moments , 1997 .

[7]  M. Lang,et al.  Bayesian comparison of different rainfall depth–duration–frequency relationships , 2008 .

[8]  Alan E. Gelfand,et al.  Continuous Spatial Process Models for Spatial Extreme Values , 2010 .

[9]  Gareth O. Roberts,et al.  Convergence assessment techniques for Markov chain Monte Carlo , 1998, Stat. Comput..

[10]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[11]  Bradley P. Carlin,et al.  Markov Chain Monte Carlo conver-gence diagnostics: a comparative review , 1996 .

[12]  A. Phatak,et al.  Spatial modelling framework for the characterisation of rainfall extremes at different durations and under climate change , 2016 .

[13]  R. García-Bartual,et al.  Estimating maximum expected short-duration rainfall intensities from extreme convective storms , 2001 .

[14]  Alec Stephenson,et al.  An extended Gaussian max-stable process model for spatial extremes , 2009 .

[15]  Ildar Ibragimov,et al.  On the Unimodality of Geometric Stable Laws , 1959 .

[16]  D. Nychka,et al.  Bayesian Spatial Modeling of Extreme Precipitation Return Levels , 2007 .

[17]  S. Nadarajah,et al.  Ordered multivariate extremes , 1998 .

[18]  H. V. Vyver Bayesian estimation of rainfall intensity-duration-frequency relationships , 2015 .

[19]  A. Davison,et al.  Bayesian Inference from Composite Likelihoods, with an Application to Spatial Extremes , 2009, 0911.5357.

[20]  Philip Heidelberger,et al.  Simulation Run Length Control in the Presence of an Initial Transient , 1983, Oper. Res..

[21]  S. Padoan,et al.  Likelihood-Based Inference for Max-Stable Processes , 2009, 0902.3060.

[22]  Demetris Koutsoyiannis,et al.  A mathematical framework for studying rainfall intensity-duration-frequency relationships , 1998 .

[23]  J. Tawn Modelling multivariate extreme value distributions , 1990 .

[24]  Martin Schlather,et al.  Models for Stationary Max-Stable Random Fields , 2002 .

[25]  Alan E. Gelfand,et al.  Hierarchical modeling for extreme values observed over space and time , 2009, Environmental and Ecological Statistics.

[26]  A. Stephenson HIGH‐DIMENSIONAL PARAMETRIC MODELLING OF MULTIVARIATE EXTREME EVENTS , 2009 .

[27]  Bradley P. Carlin,et al.  Bayesian measures of model complexity and fit , 2002 .

[28]  D. Dey,et al.  Simulation of Max-Stable Processes Marco Oesting, Mathieu Ribatet, and Cle´ment Dombry , 2016 .

[29]  Bayesian hierarchical modelling of rainfall extremes , 2013 .

[30]  S. Coles,et al.  An Introduction to Statistical Modeling of Extreme Values , 2001 .

[31]  A. Davison,et al.  Statistical Modeling of Spatial Extremes , 2012, 1208.3378.

[32]  Spatiotemporal hierarchical modelling of extreme precipitation in Western Australia using anisotropic Gaussian random fields , 2013, Environmental and Ecological Statistics.