Flash Pyrolysis of High Density PolyEthylene

The inert and oxidative flash pyrolysis of High Density Poly-Ethylene (HDPE) is studied up to 20 000 K.s-1, under pressure up to 3.0 MPa and at temperature ranging from 1000 K to 1500 K. These conditions are considered to represent those waited onboard a hybrid rocket engine using HDPE as solid fuel. Recycling applications may also find some interest. The pyrolysis products are analysed by Gas Chromatograph, Flame Ionisation Detector and Mass Spectrometer to quantify the effects of each physical parameter on the HDPE decomposition. The classical products distribution diene-alkene-alkane for each carbon atoms number is shown to be modified at such high temperature because of the pyrolysis of primary products. The pressure effect, which is generally neglected in HDPE pyrolysis studies found in open literature, is proved to be a major factor (up to one order of magnitude on the ethylene mass fraction). The heating rate presents noticeable consequences on the pyrolysis products distribution with a larger formation of light species while heavier ones are favoured under oxidative pyrolysis conditions. The experimental data should serve in the future to improve the accuracy of kinetic mechanisms for later use in numerical computing.

[1]  N. Gascoin,et al.  Kinetic modelling of High Density PolyEthylene pyrolysis: Part 2. Reduction of existing detailed mechanism , 2012 .

[2]  N. Gascoin,et al.  Fuel Pyrolysis through Porous Media : Coke Formation and Coupled Effect on Permeability , 2012 .

[3]  N. Gascoin,et al.  Detailed kinetic computations and experiments for the choice of a fuel–oxidiser couple for hybrid propulsion , 2012 .

[4]  Philippe Gillard,et al.  Literature survey for a first choice of a fuel-oxidiser couple for hybrid propulsion based on kinetic justifications , 2012 .

[5]  N. Gascoin,et al.  2-D Transient Numerical Code for Hybrid Rocket Simulations with Detailed Chemistry , 2011 .

[6]  P. Lettieri,et al.  Kinetic study of high density polyethylene (HDPE) pyrolysis , 2010 .

[7]  Jungpyo Lee,et al.  Effect of Paraffin-LDPE Blended Fuel in Hybrid Rocket Motor , 2010 .

[8]  A. Aboulkas,et al.  Thermal degradation behaviors of polyethylene and polypropylene. Part I: Pyrolysis kinetics and mechanisms , 2010 .

[9]  P. Budrugeac Theory and practice in the thermoanalytical kinetics of complex processes: Application for the isothermal and non-isothermal thermal degradation of HDPE , 2010 .

[10]  G. Abraham Etude et développement d'une méthode d'analyse par spectroscopie infrarouge appliquée à la pyrolyse d'hydrocarbures en conditions supercritiques et transitoires , 2009 .

[11]  Linda J. Broadbelt,et al.  Detailed mechanistic modeling of high-density polyethylene pyrolysis: Low molecular weight product evolution , 2009 .

[12]  K. Kar,et al.  Thermal degradation kinetics and estimation of lifetime of polyethylene particles: Effects of particle size , 2009 .

[13]  G. Sakellaropoulos,et al.  Pyrolysis kinetics and combustion characteristics of waste recovered fuels , 2009 .

[14]  M. Blazsó,et al.  Thermal degradation of polyethylene modeled on tetracontane , 2008 .

[15]  S. Bhatia,et al.  Thermal degradation of high density polyethylene in a reactive extruder , 2007 .

[16]  G. Lopez,et al.  Product distribution modelling in the thermal pyrolysis of high density polyethylene. , 2007, Journal of hazardous materials.

[17]  J. Ceamanos,et al.  Modelling of the pyrolysis of high density polyethylene: Product distribution in a fluidized bed reactor , 2007 .

[18]  Kenneth K. Kuo,et al.  Fundamentals of Hybrid Rocket Combustion and Propulsion , 2007 .

[19]  Yongping Yang,et al.  The pyrolysis of sawdust and polyethylene in TG and U-shape tube reactor. , 2007, Waste management.

[20]  T. Wampler Applied pyrolysis handbook , 2006 .

[21]  Nicolas Gascoin,et al.  Etude et Mesure de Paramètres Pertinents Dans Un écoulement Réactif Application Au Refroidissement Par Endo-carburant d'Un Super-statoréacteur , 2006 .

[22]  I. Johannes,et al.  A step-by-step model for pyrolysis kinetics of polyethylene in an autoclave under non-linear increase of temperature , 2004 .

[23]  Seungdo Kim,et al.  Using peak properties of a DTG curve to estimate the kinetic parameters of the pyrolysis reaction: application to high density polyethylene , 2004 .

[24]  P. Salatino,et al.  Oxidative pyrolysis of solid fuels , 2004 .

[25]  Jin Yang,et al.  Using the DTG curve fitting method to determine the apparent kinetic parameters of thermal decomposition of polymers , 2001 .

[26]  L. Broadbelt,et al.  Binary Interactions between High-Density Polyethylene and 4-(1-Naphthylmethyl)bibenzyl during Low-Pressure Pyrolysis , 2000 .

[27]  J. Kuipers,et al.  Recycling of polyethene and polypropene in a novel bench-scale rotating cone reactor by high temperature pyrolysis. , 1998 .

[28]  T. Wampler,et al.  Effect of heating rate on oxidative degradation of polymeric materials , 1985 .