Morse area and Scharlemann-Thompson width for hyperbolic 3-manifolds

Scharlemann and Thompson define a numerical complexity for a 3-manifold using handle decompositions of the manifold. We show that for compact hyperbolic 3-manifolds this is linearly related to a definition of metric complexity in terms of the areas of level sets of Morse functions.

[1]  Marc Lackenby Heegaard splittings, the virtually Haken conjecture and Property (τ) , 2002 .

[2]  Camillo De Lellis,et al.  The min--max construction of minimal surfaces , 2003, math/0303305.

[3]  Claire Renard Detecting surface bundles in finite covers of hyperbolic closed 3-manifolds , 2009, 0909.5371.

[4]  Daniel Ketover Degeneration of Min-Max Sequences in 3-manifolds , 2013 .

[5]  M. Freedman,et al.  Least area incompressible surfaces in 3-manifolds , 1983 .

[6]  T. Colding,et al.  Effective finiteness of irreducible Heegaard splittings of non-Haken 3-manifolds , 2014, Duke Mathematical Journal.

[7]  Camillo De Lellis,et al.  Genus bounds for minimal surfaces arising from min-max constructions , 2009, 0905.4035.

[8]  J. Hyam MINIMAL SURFACES IN GEOMETRIC 3-MANIFOLDS , 2004 .

[9]  T. Colding,et al.  The singular set of mean curvature flow with generic singularities , 2014, 1405.5187.

[10]  J. Rubinstein,et al.  Existence of minimal surfaces of bounded topological type in three-manifolds , 1986 .

[11]  Tsuyoshi Kobayashi,et al.  A linear bound on the tetrahedral number of manifolds of bounded volume (after Jorgensen and Thurston) , 2012, 1205.2441.

[12]  Martin Scharlemann,et al.  Thin position for 3-manifolds , 1992 .

[13]  Michael T. Anderson Curvature estimates for minimal surfaces in $3$-manifolds , 1985 .

[14]  Brian White,et al.  Curvature estimates and compactness theorems in 3-manifolds for surfaces that are stationary for parametric elliptic functionals , 1987 .