RESOLVING THE DYNAMICAL MASS OF A z ∼ 1.3 QUASI-STELLAR OBJECT HOST GALAXY USING SINFONI AND LASER GUIDE STAR ASSISTED ADAPTIVE OPTICS

Recent studies of the tight scaling relations between the masses of supermassive black holes (BHs) and their host galaxies have suggested that in the past BHs constituted a larger fraction of their host galaxies’ mass. However, these arguments are limited by selection effects and difficulties in determining robust host galaxy masses at high redshifts. Here we report the first results of a new, complementary diagnostic route: we directly determine a dynamical host galaxy mass for the z = 1.3 luminous quasar J090543.56+043347.3 through high spatial resolution (0.″47, 4 kpc FWHM) observations of the host galaxy gas kinematics over 30 × 40 kpc using the European Southern Observatory/Very Large Telescope/SINFONI with laser guide star adaptive optics. Combining our result of Mdyn = 2.05+1.68− 0.74 × 1011 M☉ (within a radius 5.25 ± 1.05 kpc) with MBH, MgII = 9.02 ± 1.43 × 108 M☉, MBH, Hα = 2.83+1.93− 1.13 × 108 M☉, we find that the ratio of BH mass to host galaxy dynamical mass for J090543.56+043347.3 matches the present-day relation for MBH versus MBulge, Dyn, well within the IR scatter, and deviating at most by a factor of two from the mean. J090543.56+043347.3 displays clear signs of an ongoing tidal interaction and of spatially extended star formation at a rate of 50–100 M☉ yr−1, above the cosmic average for a galaxy of this mass and redshift. We argue that its subsequent evolution may move J090543.56+043347.3 even closer to the z = 0 relation for MBH versus MBulge, Dyn. Our results support the picture in which any substantive evolution in these relations must occur prior to z ∼ 1.3. Having demonstrated the power of this modeling approach, we are currently analyzing similar data on seven further objects to better constrain such evolution.

[1]  Yue Shen,et al.  THE DEMOGRAPHICS OF BROAD-LINE QUASARS IN THE MASS–LUMINOSITY PLANE. II. BLACK HOLE MASS AND EDDINGTON RATIO FUNCTIONS , 2012, 1209.0477.

[2]  L. Ho,et al.  BLACK HOLE MASS AND BULGE LUMINOSITY FOR LOW-MASS BLACK HOLES , 2011, 1107.4103.

[3]  A. Marconi,et al.  The Spitzer/IRAC view of black hole–bulge scaling relations , 2010, 1012.3073.

[4]  H. Rix,et al.  THE STAR FORMATION HISTORY OF MASS-SELECTED GALAXIES IN THE COSMOS FIELD , 2010, 1011.6370.

[5]  Takamitsu Miyaji,et al.  THE BULK OF THE BLACK HOLE GROWTH SINCE z ∼ 1 OCCURS IN A SECULAR UNIVERSE: NO MAJOR MERGER–AGN CONNECTION , 2010, 1009.3265.

[6]  C. Conselice,et al.  On the co-evolution of supermassive black holes and their host galaxies since z= 3 , 2010, 1008.2162.

[7]  E. Athanassoula,et al.  An expanded Mbh–σ diagram, and a new calibration of active galactic nuclei masses , 2010, 1007.3834.

[8]  Lars Hernquist,et al.  CONSTRAINTS ON BLACK HOLE GROWTH, QUASAR LIFETIMES, AND EDDINGTON RATIO DISTRIBUTIONS FROM THE SDSS BROAD-LINE QUASAR BLACK HOLE MASS FUNCTION , 2010, 1006.3561.

[9]  K. Jahnke,et al.  THE NON-CAUSAL ORIGIN OF THE BLACK-HOLE–GALAXY SCALING RELATIONS , 2010, 1006.0482.

[10]  Heidelberg,et al.  Mapping the ionised gas around the luminous QSO HE 1029-1401: evidence for minor merger events? , 2010, 1005.2959.

[11]  R. Somerville,et al.  On the evolution of the intrinsic scatter in black hole versus galaxy mass relations , 2010, 1005.2100.

[12]  E. Bell,et al.  THE MERGER-DRIVEN EVOLUTION OF MASSIVE GALAXIES , 2010, 1002.4193.

[13]  D. Wake,et al.  THE GROWTH OF MASSIVE GALAXIES SINCE z = 2 , 2009, 0912.0514.

[14]  Yue Shen,et al.  THE IMPACT OF THE UNCERTAINTY IN SINGLE-EPOCH VIRIAL BLACK HOLE MASS ESTIMATES ON THE OBSERVED EVOLUTION OF THE BLACK HOLE–BULGE SCALING RELATIONS , 2009, 0911.5208.

[15]  T. Treu,et al.  COSMIC EVOLUTION OF BLACK HOLES AND SPHEROIDS. IV. THE MBH–Lsph RELATION , 2009, 0911.4107.

[16]  A. Treves,et al.  The quasar relation through cosmic time – II. Evidence for evolution from z = 3 to the present age , 2009, 0911.2988.

[17]  J. Trump,et al.  ON THE COSMIC EVOLUTION OF THE SCALING RELATIONS BETWEEN BLACK HOLES AND THEIR HOST GALAXIES: BROAD-LINE ACTIVE GALACTIC NUCLEI IN THE zCOSMOS SURVEY , 2009, 0910.4970.

[18]  Daniel Durand,et al.  Astronomical Data Analysis Software and Systems XI , 2009 .

[19]  R. Somerville Empirical constraints on the evolution of the relationship between black hole and galaxy mass: scatter matters , 2009, 0908.0927.

[20]  L. Ho,et al.  THE GROWTH OF BLACK HOLES: INSIGHTS FROM OBSCURED ACTIVE GALAXIES , 2009, 0907.1086.

[21]  Kyle R. Stewart,et al.  MERGERS AND BULGE FORMATION IN ΛCDM: WHICH MERGERS MATTER? , 2009, 0906.5357.

[22]  Heidelberg,et al.  Kinematic Analysis of Nuclear Spirals: Feeding the Black Hole in NGC 1097 , 2009, 0905.3556.

[23]  Ralf Bender,et al.  THE ASTROPHYSICAL JOURNAL Preprint typeset using L ATEX style emulateapj v. 10/09/06 THE M–σ AND M–L RELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER , 2008 .

[24]  R. Bender,et al.  CORRELATIONS BETWEEN SUPERMASSIVE BLACK HOLES, VELOCITY DISPERSIONS, AND MASS DEFICITS IN ELLIPTICAL GALAXIES WITH CORES , 2009, 0901.3778.

[25]  B. Peterson,et al.  SYSTEMATIC UNCERTAINTIES IN BLACK HOLE MASSES DETERMINED FROM SINGLE-EPOCH SPECTRA , 2008, 0810.3234.

[26]  J. Kollmeier,et al.  An Improved Method for Using Mg II to Estimate Black Hole Masses in Active Galactic Nuclei , 2008, 0810.1950.

[27]  P. Hopkins,et al.  QUASARS ARE NOT LIGHT BULBS: TESTING MODELS OF QUASAR LIFETIMES WITH THE OBSERVED EDDINGTON RATIO DISTRIBUTION , 2008, 0809.3789.

[28]  F. Walter,et al.  IMAGING THE MOLECULAR GAS IN A z = 3.9 QUASAR HOST GALAXY AT 0.″3 RESOLUTION: A CENTRAL, SUB-KILOPARSEC SCALE STAR FORMATION RESERVOIR IN APM 08279+5255 , 2008, 0809.0754.

[29]  F. Walter,et al.  Formation of a Quasar Host Galaxy through a Wet Merger 1.4 Billion Years after the Big Bang , 2008, 0808.3774.

[30]  U. Sheffield,et al.  Enormous disc of cool gas surrounding the nearby powerful radio galaxy NGC 612 (PKS 0131−36) , 2008, 0805.3371.

[31]  L. Ho,et al.  Properties of Active Galaxies Deduced from H I Observations , 2008, 0803.1952.

[32]  C. Peng How Mergers May Affect the Mass Scaling Relation between Gravitationally Bound Systems , 2007 .

[33]  T. Treu,et al.  Comparing and Calibrating Black Hole Mass Estimators for Distant Active Galactic Nuclei , 2007, 0710.1839.

[34]  G. Richards,et al.  Biases in Virial Black Hole Masses: An SDSS Perspective , 2007, 0709.3098.

[35]  L. Ho The CO Tully-Fisher Relation and Implications for the Host Galaxies of High-Redshift Quasars , 2007, 0707.3436.

[36]  K. Gebhardt,et al.  The Black Hole Mass-Galaxy Bulge Relationship for QSOs in the Sloan Digital Sky Survey Data Release 3 , 2006, astro-ph/0612568.

[37]  T. Treu,et al.  Cosmic Evolution of Black Holes and Spheroids. II. Scaling Relations at z = 0.36 , 2007, 0706.0519.

[38]  C. Peng How Mergers May Affect The Mass Scaling Relations Between Black Holes, Galaxies, and Other Gravita , 2007, 0704.1860.

[39]  A. Szalay,et al.  The Sloan Digital Sky Survey Quasar Catalog. IV. Fifth Data Release , 2007, 0704.0806.

[40]  R. Davies,et al.  A method to remove residual OH emission from near-infrared spectra , 2007 .

[41]  S. O. Physics,et al.  Extended, regular HI structures around early-type galaxies , 2007, astro-ph/0701716.

[42]  B. Trakhtenbrot,et al.  Cosmic Evolution of Mass Accretion Rate and Metallicity in Active Galactic Nuclei , 2006, astro-ph/0607654.

[43]  Garching,et al.  Emission-line diagnostics of low-metallicity active galactic nuclei , 2006, astro-ph/0607311.

[44]  T. Treu,et al.  Cosmic Evolution of Black Holes and Spheroids. I. The MBH-σ Relation at z = 0.36 , 2006, astro-ph/0603648.

[45]  J. Lehár,et al.  Probing the Coevolution of Supermassive Black Holes and Galaxies Using Gravitationally Lensed Quasar Hosts , 2006, astro-ph/0603248.

[46]  National Radio Astronomy Observatory,et al.  The Black Hole-Bulge Relationship for QSOs at High Redshift , 2005, astro-ph/0512418.

[47]  M. Cappellari,et al.  A bar signature and central disc in the gaseous and stellar velocity fields of NGC 5448 , 2005, astro-ph/0509642.

[48]  L. Ho,et al.  Probing the Coevolution of Supermassive Black Holes and Quasar Host Galaxies , 2005, astro-ph/0509155.

[49]  Arjun Dey,et al.  Black Hole Masses and Eddington Ratios at 0.3 < z < 4 , 2005, astro-ph/0508657.

[50]  L. Ho,et al.  ESTIMATING BLACK HOLE MASSES IN ACTIVE GALAXIES USING THE H α EMISSION LINE , 2005 .

[51]  D. M. Alexander,et al.  The Relationship between Stellar and Black Hole Mass in Submillimeter Galaxies , 2005, astro-ph/0507610.

[52]  Alister W. Graham,et al.  Core Depletion from Coalescing Supermassive Black Holes , 2004, astro-ph/0503177.

[53]  Bernard Delabre,et al.  First light of SINFONI at the VLT , 2004 .

[54]  Hans-Walter Rix,et al.  On the Black Hole Mass-Bulge Mass Relation , 2004, astro-ph/0402376.

[55]  R. Maiolino,et al.  Local supermassive black holes, relics of active galactic nuclei and the X-ray background , 2003, astro-ph/0311619.

[56]  H Germany,et al.  Integral field spectroscopy of QSO host galaxies , 2003, astro-ph/0311208.

[57]  A. Marconi,et al.  The Relation between Black Hole Mass, Bulge Mass, and Near-Infrared Luminosity , 2003, astro-ph/0304274.

[58]  Norbert N. Hubin,et al.  SINFONI - Integral field spectroscopy at 50 milli-arcsecond resolution with the ESO VLT , 2003, SPIE Astronomical Telescopes + Instrumentation.

[59]  M. Dietrich,et al.  The black hole-bulge relationship in QSOS , 2002, astro-ph/0210050.

[60]  R. McLure,et al.  Measuring the black hole masses of high-redshift quasars , 2002, astro-ph/0204473.

[61]  B. Peterson,et al.  Determining Central Black Hole Masses in Distant Active Galaxies and Quasars. II. Improved Optical and UV Scaling Relationships , 2002, astro-ph/0601303.

[62]  S. Tremaine,et al.  The Slope of the Black Hole Mass versus Velocity Dispersion Correlation , 2002, astro-ph/0203468.

[63]  S. Tremaine,et al.  Observational constraints on growth of massive black holes , 2002, astro-ph/0203082.

[64]  J. Dunlop,et al.  On the black hole–bulge mass relation in active and inactive galaxies , 2001, astro-ph/0201081.

[65]  Ralf Bender,et al.  A Relationship between Nuclear Black Hole Mass and Galaxy Velocity Dispersion , 2000, astro-ph/0006289.

[66]  D. Merritt,et al.  A Fundamental Relation between Supermassive Black Holes and Their Host Galaxies , 2000, astro-ph/0006053.

[67]  G. Canalizo,et al.  3C 48: Stellar Populations and the Kinematics of Stars and Gas in the Host Galaxy , 1999, astro-ph/9908020.

[68]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[69]  A. Pickles A Stellar Spectral Flux Library: 1150–25000 Å , 1998 .

[70]  S. Tremaine,et al.  The Demography of Massive Dark Objects in Galaxy Centers , 1997, astro-ph/9708072.

[71]  Richard L. White,et al.  A Catalog of 1.4 GHz Radio Sources from the FIRST Survey , 1997 .

[72]  P. Salucci,et al.  The Universal Rotation Curve of Spiral Galaxies: I. the Dark Matter Connection , 1995, astro-ph/9506004.

[73]  Richard L. White,et al.  The FIRST Survey: Faint Images of the Radio Sky at twenty centimeters , 1995 .

[74]  S. Veilleux,et al.  Spectral Classification of Emission-Line Galaxies , 1986 .

[75]  John Kormendy,et al.  Inward Bound—The Search for Supermassive Black Holes in Galactic Nuclei , 1995 .

[76]  J. Baldwin,et al.  ERRATUM - CLASSIFICATION PARAMETERS FOR THE EMISSION-LINE SPECTRA OF EXTRAGALACTIC OBJECTS , 1981 .