A multi-item generalized intuitionistic fuzzy inventory model with inventory level dependent demand using possibility mean, variance and covariance

[1]  George J. Klir,et al.  On fuzzy-set interpretation of possibility theory , 1999, Fuzzy Sets Syst..

[2]  Zeshui Xu,et al.  Generalized aggregation operators for intuitionistic fuzzy sets , 2010 .

[3]  Chandan Kumar Sarkar,et al.  A threshold voltage model for short-channel MOSFETs taking into account the varying depth of channel depletion layers around the source and drain , 2008, Microelectron. Reliab..

[4]  Huchang Liao,et al.  Visualization and quantitative research on intuitionistic fuzzy studies , 2016, J. Intell. Fuzzy Syst..

[5]  Deng-Feng Li,et al.  A note on "using intuitionistic fuzzy sets for fault-tree analysis on printed circuit board assembly" , 2008, Microelectron. Reliab..

[6]  Totan Garai,et al.  Expected Value of Exponential Fuzzy Number and Its Application to Multi-item Deterministic Inventory Model for Deteriorating Items , 2017 .

[7]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[8]  Zeshui Xu,et al.  Preference relations based on hesitant-intuitionistic fuzzy information and their application in group decision making , 2015, Comput. Ind. Eng..

[9]  Wei Zhou,et al.  Intuitionistic Fuzzy Geometric Bonferroni Means and Their Application in Multicriteria Decision Making , 2012, Int. J. Intell. Syst..

[10]  R. P. Tripathi,et al.  Inventory model with different demand rate and different holding cost , 2013 .

[11]  Harish Garg,et al.  Multi-objective non-linear programming problem in intuitionistic fuzzy environment: Optimistic and pessimistic view point , 2016, Expert Syst. Appl..

[12]  Harish Garg Fuzzy Inventory Models for Deteriorating Items Under Different Types of Lead-Time Distributions , 2015, Intelligent Techniques in Engineering Management.

[13]  L. Ouyang,et al.  An optimal replenishment policy for non-instantaneous deteriorating items with stock-dependent demand and partial backlogging , 2006 .

[14]  Yujia Liu,et al.  An approach for multiple attribute group decision making problems with interval-valued intuitionistic trapezoidal fuzzy numbers , 2013, Comput. Ind. Eng..

[15]  Jinn-Tsair Teng,et al.  On "An EOQ model for perishable items under stock-dependent selling rate and time-dependent partial backlogging" by Dye and Ouyang , 2006, Eur. J. Oper. Res..

[16]  G. Padmanabhan,et al.  EOQ models for perishable items under stock dependent selling rate , 1995 .

[17]  Dipankar Chakraborty,et al.  Expected value of intuitionistic fuzzy number and its application to solve multi-objective multi-item solid transportation problem for damageable items in intuitionistic fuzzy environment , 2016, J. Intell. Fuzzy Syst..

[18]  R. Yager On the specificity of a possibility distribution , 1992 .

[19]  Harish Garg,et al.  A novel approach for analyzing the reliability of series-parallel system using credibility theory and different types of intuitionistic fuzzy numbers , 2016 .

[20]  Shu-Ping Wan,et al.  Multi-Attribute Decision Making Method Based on Possibility variance coefficient of triangular Intuitionistic Fuzzy numbers , 2013, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[21]  Zeshui Xu,et al.  Some geometric aggregation operators based on intuitionistic fuzzy sets , 2006, Int. J. Gen. Syst..

[22]  Dejian Yu,et al.  Researching the development of Atanassov intuitionistic fuzzy set: Using a citation network analysis , 2015, Appl. Soft Comput..

[23]  Shu-Ping Wan,et al.  Possibility mean, variance and covariance of triangular intuitionistic fuzzy numbers , 2013, J. Intell. Fuzzy Syst..

[24]  Harish Garg,et al.  Arithmetic Operations on Generalized Parabolic Fuzzy Numbers and Its Application , 2018 .

[25]  Liang-Yuh Ouyang,et al.  An EOQ model for perishable items under stock-dependent selling rate and time-dependent partial backlogging , 2005, Eur. J. Oper. Res..

[26]  Shu-Ping Wan,et al.  Possibility Method for Triangular Intuitionistic Fuzzy Multi-attribute Group Decision Making with Incomplete Weight Information , 2014, Int. J. Comput. Intell. Syst..

[27]  Christer Carlsson,et al.  On Possibilistic Mean Value and Variance of Fuzzy Numbers , 1999, Fuzzy Sets Syst..

[28]  R. Uthayakumar,et al.  Designing a new computational approach of partial backlogging on the economic production quantity model for deteriorating items with non-linear holding cost under inflationary conditions , 2011, Optim. Lett..

[29]  Chung-Yuan Dye,et al.  An EOQ model for deteriorating items with time varying demand and partial backlogging , 1999, J. Oper. Res. Soc..

[30]  Robert Fullér,et al.  On Weighted Possibilistic Mean and Variance of Fuzzy Numbers , 2002, Fuzzy Sets Syst..

[31]  Didier Dubois,et al.  Possibility Theory - An Approach to Computerized Processing of Uncertainty , 1988 .

[32]  J. Sicilia,et al.  An economic lot-size model with non-linear holding cost hinging on time and quantity , 2013 .