Current advances in the phylogenetic reconstruction of metazoan evolution. A new paradigm for the Cambrian explosion?

The study of metazoan evolution has fascinated biologists for centuries, and it will certainly keep doing so. Recent interest on the origin of metazoan body plans, early metazoan evolution, genetic mechanisms generating disparity and diversity, molecular clock information, paleontology, and biogeochemistry is contributing to a better understanding of the current phyletic diversity. Unfortunately, the pattern of the metazoan tree of life still shows some important gaps in knowledge. It is the aim of this article to review some of the most important issues related to the inference of the metazoan tree, and point towards possible ways of solving certain obscure aspects in the history of animal evolution. A new hypothesis of the metazoan diversification during the Cambrian explosion is proposed by synthesizing ideas from phylogenetics, molecular evolution, paleontology, and developmental biology.

[1]  John J. Wiens,et al.  Weighting, Partitioning, and Combining Characters in Phylogenetic Analysis , 1994 .

[2]  A. Cooper,et al.  Evolutionary explosions and the phylogenetic fuse. , 1998, Trends in ecology & evolution.

[3]  R. DeSalle,et al.  Assessing the relative contribution of molecular and morphological characters in simultaneous analysis trees. , 1998, Molecular phylogenetics and evolution.

[4]  F. Ayala,et al.  Origin of the metazoan phyla: molecular clocks confirm paleontological estimates. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[5]  S. Carroll,et al.  Early animal evolution: emerging views from comparative biology and geology. , 1999, Science.

[6]  Anne Chenuil,et al.  Can the Cambrian explosion be inferred through molecular phylogeny , 1994 .

[7]  R. Raff,et al.  Evidence for a clade of nematodes, arthropods and other moulting animals , 1997, Nature.

[8]  D. Littlewood,et al.  The interrelationships of the echinoderm classes: morphological and molecular evidence , 1997 .

[9]  Gonzalo Giribet,et al.  Arthropod phylogeny based on eight molecular loci and morphology , 2001, Nature.

[10]  Greg W. Rouse,et al.  Assessing the usefulness of histone H3, U2 snRNA and 28S rDNA in analyses of polychaete relationships , 1999 .

[11]  A. Collins,et al.  Evaluating hypotheses of basal animal phylogeny using complete sequences of large and small subunit rRNA , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[12]  W C Wheeler,et al.  The Strepsiptera problem: phylogeny of the holometabolous insect orders inferred from 18S and 28S ribosomal DNA sequences and morphology. , 1997, Systematic biology.

[13]  J. W. Valentine,et al.  Fossils, molecules and embryos: new perspectives on the Cambrian explosion. , 1999, Development.

[14]  K. Peterson,et al.  Animal phylogeny and the ancestry of bilaterians: inferences from morphology and 18S rDNA gene sequences , 2001, Evolution & development.

[15]  Simon Conway Morris,et al.  Wonderful Crucible@@@The Crucible of Creation: The Burgess Shale and the Rise of Animals. , 1998 .

[16]  G. Edgecombe,et al.  Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution , 1998 .

[17]  R. Raff,et al.  Phylogenetic position of phylum Nemertini, inferred from 18S rRNA sequences: molecular data as a test of morphological character homology. , 1992, Molecular biology and evolution.

[18]  R. DeSalle,et al.  Character congruence of multiple data partitions and the origin of the Hawaiian Drosophilidae. , 1998, Molecular phylogenetics and evolution.

[19]  M. Akam,et al.  Hox genes and the phylogeny of the arthropods , 2001, Current Biology.

[20]  M. O'Leary,et al.  Parsimony Analysis of Total Evidence from Extinct and Extant Taxa and the Cetacean-Artiodactyl Question (Mammalia, Ungulata)☆ , 1999 .

[21]  A. Knoll,et al.  Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite , 1998, Nature.

[22]  E. Herniou,et al.  Acoel flatworms: earliest extant bilaterian Metazoans, not members of Platyhelminthes. , 1999, Science.

[23]  G. Giribet,et al.  The position of arthropods in the animal kingdom: a search for a reliable outgroup for internal arthropod phylogeny. , 1998, Molecular phylogenetics and evolution.

[24]  J. Farris,et al.  The implications of congruence in Menidia , 1981 .

[25]  R. Kristensen,et al.  Cycliophora is a new phylum with affinities to Entoprocta and Ectoprocta , 1995, Nature.

[26]  S. Tyler,et al.  Functional morphology of musculature in the acoelomate worm, Convoluta pulchra (Plathelminthes) , 1999, Zoomorphology.

[27]  M. Martindale,et al.  Conservation of the spiralian developmental program: cell lineage of the nemertean, Cerebratulus lacteus. , 1998, Developmental biology.

[28]  N. Scharff,et al.  CLADISTIC ANALYSES OF THE ANIMAL KINGDOM , 1996 .

[29]  E. Herniou,et al.  Elongation factor 1-alpha sequences alone do not assist in resolving the position of the acoela within the metazoa. , 2001, Molecular biology and evolution.

[30]  A. Knoll,et al.  PHOSPHATIZED ANIMAL EMBRYOS FROM THE NEOPROTEROZOIC DOUSHANTUO FORMATION AT WENG'AN, GUIZHOU, SOUTH CHINA , 2000 .

[31]  L. Zaninetti,et al.  Elongation factor 1-alpha sequences do not support an early divergence of the Acoela. , 2000, Molecular biology and evolution.

[32]  D. McHugh Molecular phylogeny of the Annelida , 2000 .

[33]  P. Funch,et al.  Micrognathozoa: A new class with complicated jaws like those of Rotifera and Gnathostomulida , 2000, Journal of morphology.

[34]  A. Bezděk,et al.  Phylogeny of the Metazoa Based on Morphological and 18S Ribosomal DNA Evidence , 1998, Cladistics : the international journal of the Willi Hennig Society.

[35]  D. Tautz,et al.  Mitochondrial protein phylogeny joins myriapods with chelicerates , 2001, Nature.

[36]  W. Wheeler,et al.  Triploblastic relationships with emphasis on the acoelomates and the position of Gnathostomulida, Cycliophora, Plathelminthes, and Chaetognatha: a combined approach of 18S rDNA sequences and morphology. , 2000, Systematic biology.

[37]  J. Shultz,et al.  Molecular Phylogeny of Arthropods and the Significance of the Cambrian “Explosion” for Molecular Systematics , 1998 .

[38]  D. McHugh,et al.  Molecular evidence that echiurans and pogonophorans are derived annelids. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[39]  G. Scholtz Cleavage, germ band formation and head segmentation: the ground pattern of the Euarthropoda , 1998 .

[40]  D. Eernisse Arthropod and annelid relationships re-examined , 1998 .

[41]  T. Kaufman,et al.  Molecular evidence for the gnathobasic derivation of arthropod mandibles and for the appendicular origin of the labrum and other structures , 1998, Development Genes and Evolution.

[42]  J. Kirschvink,et al.  Age of Neoproterozoic bilatarian body and trace fossils, White Sea, Russia: implications for metazoan evolution. , 2000, Science.

[43]  A. Kluge A Concern for Evidence and a Phylogenetic Hypothesis of Relationships among Epicrates (Boidae, Serpentes) , 1989 .

[44]  S. Morris The Cambrian "explosion": slow-fuse or megatonnage? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[45]  O. Raikova,et al.  An endocrine brain? The pattern of FMRF-amide immunoreactivity in Acoela (Plathelminthes). , 1998, Tissue & cell.

[46]  J. Zrzavý The interrelationships of metazoan parasites: a review of phylum-and higher-level hypotheses from recent morphological and molecular phylogenetic analyses. , 2001, Folia parasitologica.

[47]  M. Wills,et al.  An arthropod phylogeny based on fossil and recent taxa , 1998 .

[48]  R. Raff,et al.  Molecular phylogeny of the animal kingdom. , 1988, Science.

[49]  C. Borchiellini,et al.  Phylogenetic analysis of the Hsp70 sequences reveals the monophyly of Metazoa and specific phylogenetic relationships between animals and fungi. , 1998, Molecular biology and evolution.

[50]  J. Shultz,et al.  Molecular phylogeny of the major arthropod groups indicates polyphyly of crustaceans and a new hypothesis for the origin of hexapods. , 1997, Molecular biology and evolution.

[51]  Jeffrey S. Levinton,et al.  Molecular Evidence for Deep Precambrian Divergences Among Metazoan Phyla , 1996, Science.

[52]  M. Siddall,et al.  Long‐Branch Abstractions , 1999 .

[53]  D. E. K. Ferrier,et al.  Sipunculan ParaHox genes , 2001, Evolution & development.

[54]  R. de Wachter,et al.  18S rRNA data indicate that Aschelminthes are polyphyletic in origin and consist of at least three distinct clades. , 1995, Molecular biology and evolution.

[55]  N. Satoh,et al.  Early evolution of the Metazoa and phylogenetic status of diploblasts as inferred from amino acid sequence of elongation factor-1 alpha. , 1996, Molecular phylogenetics and evolution.

[56]  K. Weber,et al.  Molecular Phylogeny of Metazoan Intermediate Filament Proteins , 1998, Journal of Molecular Evolution.

[57]  G. Edgecombe,et al.  Arthropod Cladistics: Combined Analysis of Histone H3 and U2 snRNA Sequences and Morphology , 2000 .

[58]  M. Telford,et al.  Gnathostomulida--an enigmatic metazoan phylum from both morphological and molecular perspectives. , 1998, Molecular phylogenetics and evolution.

[59]  Sean B. Carroll,et al.  Hox genes in brachiopods and priapulids and protostome evolution , 1999, Nature.

[60]  M. Wills,et al.  Disparity as an evolutionary index: a comparison of Cambrian and Recent arthropods , 1994, Paleobiology.

[61]  M. Milinkovitch,et al.  Myzostomida: a link between trochozoans and flatworms? , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[62]  J. Ausió,et al.  Advances in Spermatozoal Phylogeny and Taxonomy , 1995 .

[63]  J. Lake,et al.  Evidence from 18S ribosomal DNA that the lophophorates are protostome animals , 1995, Science.

[64]  O. Bininda-Emonds,et al.  Supraspecific taxa as terminals in cladistic analysis: implicit assumptions of monophyly and a comparison of methods , 1998 .

[65]  Arnold G. Kluge,et al.  AMNIOTE PHYLOGENY AND THE IMPORTANCE OF FOSSILS , 1988, Cladistics : the international journal of the Willi Hennig Society.

[66]  D. Littlewood,et al.  The interrelationships of all major groups of Platyhelminthes: phylogenetic evidence from morphology and molecules , 1999 .

[67]  M. Donoghue,et al.  The Importance of Fossils in Phylogeny Reconstruction , 1989 .

[68]  L. Prendini,et al.  Species or supraspecific taxa as terminals in cladistic analysis? Groundplans versus exemplars revisited. , 2001, Systematic biology.

[69]  R. P. Higgins,et al.  Internal anatomy of Meiopriapulus fijiensis (Priapulida) , 1989 .

[70]  F. Harrison Microscopic anatomy of invertebrates , 1991 .

[71]  B. Swalla,et al.  Evolution of the chordate body plan: new insights from phylogenetic analyses of deuterostome phyla. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[72]  D. Janies Phylogenetic relationships of extant echinoderm classes , 2001 .

[73]  T. Cavalier-smith,et al.  A revised six‐kingdom system of life , 1998, Biological reviews of the Cambridge Philosophical Society.

[74]  W. Wheeler Sampling, groundplans, total evidence and the systematics of arthropods , 1998 .

[75]  Axel Meyer,et al.  Limitations of Metazoan 18S rRNA Sequence Data: Implications for Reconstructing a Phylogeny of the Animal Kingdom and Inferring the Reality of the Cambrian Explosion , 1998, Journal of Molecular Evolution.

[76]  W. Wheeler,et al.  ARTHROPOD PHYLOGENY: A COMBINED APPROACH , 1993, Cladistics : the international journal of the Willi Hennig Society.

[77]  W. Wheeler,et al.  The position of arthropods in the animal kingdom: Ecdysozoa, islands, trees, and the "Parsimony ratchet". , 1999, Molecular phylogenetics and evolution.

[78]  V. Hypša,et al.  Myzostomida Are Not Annelids: Molecular and Morphological Support for a Clade of Animals with Anterior Sperm Flagella , 2001, Cladistics : the international journal of the Willi Hennig Society.

[79]  CLSM analysis of serotonin-immunoreactive neurons in the central nervous system of Nais variabilis, Slavina appendiculata and Stylaria lacustris (Oligochaeta: Naididae) , 1999 .