Excesses of Gabor frames

Abstract A Gabor system for L 2 ( R d ) has the form G (g,Λ)={e 2πibx g(x−a)} (a,b)∈Λ , where g∈L 2 ( R d ) and Λ is a sequence of points in R 2d . We prove that, with only a mild restriction on the generator g and for nearly arbitrary sets of time–frequency shifts Λ, an overcomplete Gabor frame has infinite excess, and in fact there exists an infinite subset that can be removed yet leave a frame. The proof of this result yields an interesting connection between the density of Λ and the excess of the frame.

[1]  Peter G. Casazza,et al.  Deficits and Excesses of Frames , 2003, Adv. Comput. Math..

[2]  Deguang Han,et al.  The Balian–Low theorem for symplectic lattices in higher dimensions , 2002 .

[3]  Peter G. Casazza,et al.  Equal-Norm Tight Frames with Erasures , 2003, Adv. Comput. Math..

[4]  Radu V. Balan,et al.  The analysis and design of windowed Fourier frame based multiple description source coding schemes , 2000, IEEE Trans. Inf. Theory.

[5]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[6]  H. Feichtinger,et al.  Banach spaces related to integrable group representations and their atomic decompositions, I , 1989 .

[7]  Vivek K Goyal,et al.  Quantized Frame Expansions with Erasures , 2001 .

[8]  Karlheinz Gröchenig,et al.  Foundations of Time-Frequency Analysis , 2000, Applied and numerical harmonic analysis.

[9]  K. Gröchenig,et al.  Time–Frequency analysis of localization operators , 2003 .

[10]  P. Walters Introduction to Ergodic Theory , 1977 .

[11]  Youming Liu,et al.  The Uniformity of Non-Uniform Gabor Bases , 2003, Adv. Comput. Math..

[12]  A. Janssen A density theorem for time-continuous filter banks , 1998 .

[13]  Yonina C. Eldar,et al.  Geometrically uniform frames , 2001, IEEE Trans. Inf. Theory.

[14]  Christopher Heil,et al.  Continuous and Discrete Wavelet Transforms , 1989, SIAM Rev..

[15]  Y. Sinai Dynamical Systems II , 1989 .

[16]  H. Feichtinger,et al.  Banach spaces related to integrable group representations and their atomic decompositions. Part II , 1989 .

[17]  I. Sinai,et al.  Ergodic theory with applications to dynamical systems and statistical mechanics , 1989 .

[18]  H. Feichtinger On a new Segal algebra , 1981 .

[19]  H. Feichtinger,et al.  Gabor Frames and Time-Frequency Analysis of Distributions* , 1997 .

[20]  H. Feichtinger Banach Spaces of Distributions of Wiener’s Type and Interpolation , 1981 .

[21]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[22]  O. Christensen,et al.  Density of Gabor Frames , 1999 .

[23]  J. Ramanathan,et al.  Incompleteness of Sparse Coherent States , 1995 .