Optimal Vaccination Policies for an SIR Model with Limited Resources

AbstractThe purpose of the paper is to use analytical method and optimization tool to suggest a vaccination program intensity for a basic SIR epidemic model with limited resources for vaccination. We show that there are two different scenarios for optimal vaccination strategies, and obtain analytical solutions for the optimal control problem that minimizes the total cost of disease under the assumption of daily vaccine supply being limited. These solutions and their corresponding optimal control policies are derived explicitly in terms of initial conditions, model parameters and resources for vaccination. With sufficient resources, the optimal control strategy is the normal Bang–Bang control. However, with limited resources, the optimal control strategy requires to switch to time-variant vaccination.

[1]  Neil M. Ferguson,et al.  The effect of public health measures on the 1918 influenza pandemic in U.S. cities , 2007, Proceedings of the National Academy of Sciences.

[2]  C. Bridges,et al.  Transmission of influenza: implications for control in health care settings. , 2003, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[3]  R. Vidal Dynamic optimization: The calculus of variations and optimal control in economics and management: Morton I. KAMIEN and Nancy L. SCHWARTZ Volume 4 in: Dynamic Economics: Theory and Applications, North-Holland, New York, 1981, xi + 331 pages, Dfl.90.00 , 1982 .

[4]  J. Hyman,et al.  Transmission Dynamics of the Great Influenza Pandemic of 1918 in Geneva, Switzerland: Assessing the Effects of Hypothetical Interventions , 2022 .

[5]  S. Sethi,et al.  Optimal Control of Some Simple Deterministic Epidemic Models , 1978 .

[6]  Sterling C. Johnson,et al.  Reduced hippocampal activation during episodic encoding in middle-aged individuals at genetic risk of Alzheimer's Disease: a cross-sectional study , 2006, BMC medicine.

[7]  CÉSAR CASTILHO,et al.  OPTIMAL CONTROL OF AN EPIDEMIC THROUGH EDUCATIONAL CAMPAIGNS , 2006 .

[8]  David G. Hull,et al.  Optimal Control Theory for Applications , 2003 .

[9]  David Greenhalgh,et al.  Some results on optimal control applied to epidemics , 1988 .

[10]  S. Sethi,et al.  Quantitative guidelines for communicable disease control program: a complete synthesis. , 1974, Biometrics.

[11]  C. Fraser,et al.  Transmission Dynamics of the Etiological Agent of SARS in Hong Kong: Impact of Public Health Interventions , 2003, Science.

[12]  J. Dushoff,et al.  Dynamical resonance can account for seasonality of influenza epidemics. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[13]  Isaac Takaidza,et al.  Analysis of recruitment and industrial human resources management for optimal productivity in the presence of the HIV/AIDS epidemic , 2013, Journal of biological physics.

[14]  Troy Day,et al.  Optimal control of epidemics with limited resources , 2011, Journal of mathematical biology.

[15]  K. H. Wickwire,et al.  Optimal isolation policies for deterministic and stochastic epidemics , 1975 .

[16]  Greg Dwyer,et al.  emerging diseases Uncertainty in predictions of disease spread and public health responses to bioterrorism and , 2006 .

[17]  David L. Craft,et al.  Emergency response to a smallpox attack: The case for mass vaccination , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. Robins,et al.  Transmissibility of 1918 pandemic influenza , 2004, Nature.

[19]  M. Petit Dynamic optimization. The calculus of variations and optimal control in economics and management : by Morton I. Kamien and Nancy L. Schwartz. Second Edition. North-Holland (Advanced Textbooks in Economics), Amsterdam and New York, 1991. Pp. xvii+377. ISBN0-444- 01609-0 , 1994 .

[20]  L. Bobisud Optimal control of a deterministic epidemic , 1977 .

[21]  J. Robins,et al.  Transmission Dynamics and Control of Severe Acute Respiratory Syndrome , 2003, Science.

[22]  M. Postma,et al.  An optimal control theory approach to non-pharmaceutical interventions , 2010, BMC infectious diseases.

[23]  H. Behncke Optimal control of deterministic epidemics , 2000 .

[24]  C. Viboud,et al.  A Bayesian MCMC approach to study transmission of influenza: application to household longitudinal data , 2004, Statistics in medicine.

[25]  V. Dukic,et al.  Uncertainty in predictions of disease spread and public health responses to bioterrorism and emerging diseases , 2006, Proceedings of the National Academy of Sciences.

[26]  K. Wickwire,et al.  A note on the optimal control of carrier-borne epidemics , 1975, Journal of Applied Probability.

[27]  Hans P. Geering,et al.  Optimal control with engineering applications , 2007 .

[28]  Suresh P. Sethi,et al.  Optimal Quarantine Programmes for Controlling an Epidemic Spread , 1978 .

[29]  A. C. Chiang Elements of Dynamic Optimization , 1992 .

[30]  George M. Siouris,et al.  Applied Optimal Control: Optimization, Estimation, and Control , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[31]  D Clancy,et al.  Optimal intervention for epidemic models with general infection and removal rate functions , 1999, Journal of mathematical biology.

[32]  R. May,et al.  Infectious Diseases of Humans: Dynamics and Control , 1991, Annals of Internal Medicine.

[33]  Gesham Magombedze,et al.  Optimal control of a sex‐structured HIV/AIDS model with condom use , 2009 .

[34]  A. Abakuks Optimal immunisation policies for epidemics , 1974, Advances in Applied Probability.

[35]  F. Carrat,et al.  A 'small-world-like' model for comparing interventions aimed at preventing and controlling influenza pandemics , 2006, BMC medicine.

[36]  S. Riley,et al.  Smallpox transmission and control: Spatial dynamics in Great Britain , 2006, Proceedings of the National Academy of Sciences.

[37]  Stephen L Leib,et al.  Bacteremia causes hippocampal apoptosis in experimental pneumococcal meningitis , 2010, BMC infectious diseases.

[38]  Pejman Rohani,et al.  Appropriate Models for the Management of Infectious Diseases , 2005, PLoS medicine.