Deployable prismatic structures with rigid origami patterns

[1]  Shiyu Liu,et al.  Myard linkage and its mobile assemblies , 2009 .

[2]  Taketoshi Nojima,et al.  Modelling of folding patterns in flat membranes and cylinders by Origami , 2002 .

[3]  Ferdinando Cannella,et al.  Crease Stiffness and Panel Compliance of Carton Folds and Their Integration in Modelling , 2006 .

[4]  R. J. Wood,et al.  An Origami-Inspired Approach to Worm Robots , 2013, IEEE/ASME Transactions on Mechatronics.

[5]  Zhong You,et al.  On mobile assemblies of Bennett linkages , 2008, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[6]  Hugo I. Medellín-Castillo,et al.  An improved mobility analysis for spherical 4R linkages , 2005 .

[7]  J. Denavit,et al.  A kinematic notation for lower pair mechanisms based on matrices , 1955 .

[8]  Jiayao Ma,et al.  Axial Crushing Tests of Steel Thin-Walled Square Tubes with Pyramid Pattern , 2010 .

[9]  Zhong You,et al.  Mobile assemblies based on the Bennett linkage , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[10]  Tomohiro Tachi,et al.  Freeform Rigid-Foldable Structure using Bidirectionally Flat-Foldable Planar Quadrilateral Mesh , 2010, AAG.

[11]  Tomohiro Tachi,et al.  Folding behaviour of Tachi–Miura polyhedron bellows , 2013, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  Naohiko Watanabe,et al.  The Method for Judging Rigid Foldability , 2009 .

[13]  Mark Schenk,et al.  Geometry of Miura-folded metamaterials , 2013, Proceedings of the National Academy of Sciences.

[14]  Julian F. V. Vincent,et al.  The geometry of unfolding tree leaves , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[15]  Jian S. Dai,et al.  Origami-inspired integrated planar-spherical overconstrained mechanisms , 2014 .

[16]  Sergio Pellegrino,et al.  The Folding of Triangulated Cylinders, Part I: Geometric Considerations , 1994 .

[17]  C. H Chiang On the classification of spherical four-bar linkages , 1984 .

[18]  K. Kuribayashi,et al.  Self-deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil , 2006 .

[19]  Sicong Liu,et al.  Deployable Prismatic Structures With Origami Patterns , 2014 .

[20]  Jie Song,et al.  Light-weight thin-walled structures with patterned windows under axial crushing , 2013 .

[21]  J. Jesús Cervantes-Sánchez,et al.  A robust classification scheme for spherical 4R linkages , 2002 .

[22]  J. Hegger,et al.  ORICRETE: Modeling support for design and manufacturing of folded concrete structures , 2014, Adv. Eng. Softw..

[23]  Tomohiro Tachi,et al.  One-Dof cylindrical deployable structures with rigid quadrilateral panels , 2009 .

[24]  R. Wood,et al.  Self-folding miniature elastic electric devices , 2014 .

[25]  Zhong You,et al.  A solution for folding rigid tall shopping bags , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  Yan Chen,et al.  Axial crushing of thin-walled structures with origami patterns , 2012 .