Structures of HIV-1-Env V1V2 with broadly neutralizing antibodies reveal commonalities that enable vaccine design

[1]  Lynn Morris,et al.  New Member of the V1V2-Directed CAP256-VRC26 Lineage That Shows Increased Breadth and Exceptional Potency , 2015, Journal of Virology.

[2]  Lynn Morris,et al.  Viral variants that initiate and drive maturation of V1V2-directed HIV-1 broadly neutralizing antibodies , 2015, Nature Medicine.

[3]  David Nemazee,et al.  Priming a broadly neutralizing antibody response to HIV-1 using a germline-targeting immunogen , 2015, Science.

[4]  G. Debnath,et al.  D-101 HIV-1 neutralizing antibodies induced by native-like envelope trimers , 2016 .

[5]  James B. Munro,et al.  Crystal structure, conformational fixation, and entry-related interactions of mature ligand-free HIV-1 Env , 2015, Nature Structural &Molecular Biology.

[6]  Daniel W. Kulp,et al.  Immunization for HIV-1 Broadly Neutralizing Antibodies in Human Ig Knockin Mice , 2015, Cell.

[7]  Cinque S. Soto,et al.  Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors , 2015, Cell.

[8]  S. Zolla-Pazner,et al.  The V1V2 Region of HIV-1 gp120 Forms a Five-Stranded Beta Barrel , 2015, Journal of Virology.

[9]  Fabian Sievers,et al.  Clustal Omega , 2014, Current protocols in bioinformatics.

[10]  John P. Moore,et al.  Recombinant HIV envelope trimer selects for quaternary-dependent antibodies targeting the trimer apex , 2014, Proceedings of the National Academy of Sciences.

[11]  Peter D. Kwong,et al.  Conformational dynamics of single HIV-1 envelope trimers on the surface of native virions , 2014, Science.

[12]  Tongqing Zhou,et al.  Structure and immune recognition of trimeric prefusion HIV-1 Env , 2014, Nature.

[13]  John P. Moore,et al.  CD4-induced activation in a soluble HIV-1 Env trimer. , 2014, Structure.

[14]  Cinque S. Soto,et al.  Transplanting Supersites of HIV-1 Vulnerability , 2014, PloS one.

[15]  X. He,et al.  Comparative analysis of human and mouse immunoglobulin variable heavy regions from IMGT/LIGM-DB with IMGT/HighV-QUEST , 2014, Theoretical Biology and Medical Modelling.

[16]  Gwo-Yu Chuang,et al.  Broad and potent HIV-1 neutralization by a human antibody that binds the gp41-120 interface , 2014, Nature.

[17]  Vidya Subramanian,et al.  Broadly neutralizing influenza hemagglutinin stem-specific antibody CR8020 targets residues that are prone to escape due to host selection pressure. , 2014, Cell host & microbe.

[18]  Chaim A. Schramm,et al.  Developmental pathway for potent V1V2-directed HIV-neutralizing antibodies , 2014, Nature.

[19]  B. Korber,et al.  Prevalence of broadly neutralizing antibody responses during chronic HIV-1 infection , 2014, AIDS.

[20]  S. Zolla-Pazner,et al.  Thermodynamic signatures of the antigen binding site of mAb 447-52D targeting the third variable region of HIV-1 gp120. , 2013, Biochemistry.

[21]  John P. Moore,et al.  A Next-Generation Cleaved, Soluble HIV-1 Env Trimer, BG505 SOSIP.664 gp140, Expresses Multiple Epitopes for Broadly Neutralizing but Not Non-Neutralizing Antibodies , 2013, PLoS pathogens.

[22]  Young Do Kwon,et al.  Multidonor analysis reveals structural elements, genetic determinants, and maturation pathway for HIV-1 neutralization by VRC01-class antibodies. , 2013, Immunity.

[23]  U. Baxa,et al.  Structure of RSV Fusion Glycoprotein Trimer Bound to a Prefusion-Specific Neutralizing Antibody , 2013, Science.

[24]  Yan Liu,et al.  Supersite of immune vulnerability on the glycosylated face of HIV-1 envelope glycoprotein gp120 , 2013, Nature Structural &Molecular Biology.

[25]  Baoshan Zhang,et al.  Structural basis for diverse N-glycan recognition by HIV-1–neutralizing V1–V2–directed antibody PG16 , 2013, Nature Structural &Molecular Biology.

[26]  Ning Ma,et al.  IgBLAST: an immunoglobulin variable domain sequence analysis tool , 2013, Nucleic Acids Res..

[27]  Baoshan Zhang,et al.  Mining the antibodyome for HIV-1–neutralizing antibodies with next-generation sequencing and phylogenetic pairing of heavy/light chains , 2013, Proceedings of the National Academy of Sciences.

[28]  John P. Moore,et al.  Asymmetric recognition of the HIV-1 trimer by broadly neutralizing antibody PG9 , 2013, Proceedings of the National Academy of Sciences.

[29]  J. Mascola,et al.  N332-Directed Broadly Neutralizing Antibodies Use Diverse Modes of HIV-1 Recognition: Inferences from Heavy-Light Chain Complementation of Function , 2013, PloS one.

[30]  Guido Ferrari,et al.  Vaccine induction of antibodies against a structurally heterogeneous site of immune pressure within HIV-1 envelope protein variable regions 1 and 2. , 2013, Immunity.

[31]  J. Mascola,et al.  Human antibodies that neutralize HIV-1: identification, structures, and B cell ontogenies. , 2012, Immunity.

[32]  N. S. Laursen,et al.  Highly Conserved Protective Epitopes on Influenza B Viruses , 2012, Science.

[33]  David Nemazee,et al.  Rational immunogen design to target specific germline B cell receptors , 2012, Retrovirology.

[34]  Jordan R. Willis,et al.  Frequency and genetic characterization of V(DD)J recombinants in the human peripheral blood antibody repertoire , 2012, Immunology.

[35]  J. Bernhagen,et al.  Macrophage migration inhibitory factor covalently complexed with phenethyl isothiocyanate. , 2012, Acta crystallographica. Section F, Structural biology and crystallization communications.

[36]  M. Nussenzweig,et al.  Structural basis for germline gene usage of a potent class of antibodies targeting the CD4 binding site of HIV-1 gp120 , 2012, Retrovirology.

[37]  Gwo-Yu Chuang,et al.  A Short Segment of the HIV-1 gp120 V1/V2 Region Is a Major Determinant of Resistance to V1/V2 Neutralizing Antibodies , 2012, Journal of Virology.

[38]  James E. Crowe,et al.  Human Peripheral Blood Antibodies with Long HCDR3s Are Established Primarily at Original Recombination Using a Limited Subset of Germline Genes , 2012, PloS one.

[39]  Thomas B Kepler,et al.  B-cell–lineage immunogen design in vaccine development with HIV-1 as a case study , 2012, Nature Biotechnology.

[40]  Young Do Kwon,et al.  Structure of HIV-1 gp120 V1/V2 domain with broadly neutralizing antibody PG9 , 2011, Nature.

[41]  Pham Phung,et al.  Broad neutralization coverage of HIV by multiple highly potent antibodies , 2011, Nature.

[42]  Ron Diskin,et al.  Sequence and Structural Convergence of Broad and Potent HIV Antibodies That Mimic CD4 Binding , 2011, Science.

[43]  Mario Roederer,et al.  Focused Evolution of HIV-1 Neutralizing Antibodies Revealed by Structures and Deep Sequencing , 2011, Science.

[44]  T. Kepler,et al.  Analysis of a Clonal Lineage of HIV-1 Envelope V2/V3 Conformational Epitope-Specific Broadly Neutralizing Antibodies and Their Inferred Unmutated Common Ancestors , 2011, Journal of Virology.

[45]  Mario Roederer,et al.  Rational Design of Envelope Identifies Broadly Neutralizing Human Monoclonal Antibodies to HIV-1 , 2010, Science.

[46]  Tongqing Zhou,et al.  Structural Basis for Broad and Potent Neutralization of HIV-1 by Antibody VRC01 , 2010, Science.

[47]  J. Mascola,et al.  Crystal Structure of PG16 and Chimeric Dissection with Somatically Related PG9: Structure-Function Analysis of Two Quaternary-Specific Antibodies That Effectively Neutralize HIV-1 , 2010, Journal of Virology.

[48]  D. Burton,et al.  Structure and function of broadly reactive antibody PG16 reveal an H3 subdomain that mediates potent neutralization of HIV-1 , 2010, Proceedings of the National Academy of Sciences.

[49]  Holly Janes,et al.  Tiered Categorization of a Diverse Panel of HIV-1 Env Pseudoviruses for Assessment of Neutralizing Antibodies , 2009, Journal of Virology.

[50]  Tongqing Zhou,et al.  Structural Basis of Immune Evasion at the Site of CD4 Attachment on HIV-1 gp120 , 2009, Science.

[51]  Pham Phung,et al.  Broad and Potent Neutralizing Antibodies from an African Donor Reveal a New HIV-1 Vaccine Target , 2009, Science.

[52]  Richard T. Wyatt,et al.  Broad diversity of neutralizing antibodies isolated from memory B cells in HIV-infected individuals , 2009, Nature.

[53]  Tongqing Zhou,et al.  Structural definition of a conserved neutralization epitope on HIV-1 gp120 , 2007, Nature.

[54]  J. Mascola,et al.  Efficient protein boosting after plasmid DNA or recombinant adenovirus immunization with HIV-1 vaccine constructs. , 2007, Vaccine.

[55]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[56]  David N Mastronarde,et al.  Automated electron microscope tomography using robust prediction of specimen movements. , 2005, Journal of structural biology.

[57]  B. Laubert,et al.  Structural analysis of a set of proteins resulting from a bacterial genomics project , 2005, Proteins.

[58]  Wayne C Koff,et al.  HIV vaccine design and the neutralizing antibody problem , 2004, Nature Immunology.

[59]  T. Zhou,et al.  Enhancing protein crystallization through precipitant synergy. , 2003, Structure.

[60]  Ping Zhu,et al.  Antibody Domain Exchange Is an Immunological Solution to Carbohydrate Cluster Recognition , 2003, Science.

[61]  Cinque S. Soto,et al.  Evaluating conformational free energies: The colony energy and its application to the problem of loop prediction , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[62]  Gianni Cesareni,et al.  Unusual Binding Properties of the SH3 Domain of the Yeast Actin-binding Protein Abp1 , 2002, The Journal of Biological Chemistry.

[63]  M. Nussenzweig,et al.  Immunoglobulin heavy chain expression shapes the B cell receptor repertoire in human B cell development. , 2001, The Journal of clinical investigation.

[64]  Z. Xiang,et al.  Extending the accuracy limits of prediction for side-chain conformations. , 2001, Journal of molecular biology.

[65]  S. L. Mayo,et al.  Designed protein G core variants fold to native‐like structures: Sequence selection by ORBIT tolerates variation in backbone specification , 2001, Protein science : a publication of the Protein Society.

[66]  J. Mccammon,et al.  Situs: A package for docking crystal structures into low-resolution maps from electron microscopy. , 1999, Journal of structural biology.

[67]  J. Sodroski,et al.  Structure of an HIV gp120 envelope glycoprotein in complex with the CD4 receptor and a neutralizing human antibody , 1998, Nature.

[68]  Young Do Kwon,et al.  Crystal structure , conformational fixation , and entry-related interactions of mature ligand-free HIV-1 Env , 2016 .

[69]  STRUCTURAL AND FUNCTIONAL ANALYSIS , 2015 .

[70]  David C Montefiori,et al.  Measuring HIV neutralization in a luciferase reporter gene assay. , 2009, Methods in molecular biology.

[71]  Wen Jiang,et al.  EMAN2: an extensible image processing suite for electron microscopy. , 2007, Journal of structural biology.

[72]  Lei Xie,et al.  Using multiple structure alignments, fast model building, and energetic analysis in fold recognition and homology modeling , 2003, Proteins.

[73]  Z. Otwinowski,et al.  Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.