Classical Enhancement of Quantum Error-Correcting Codes

We present a general formalism for quantum error-correcting codes that encode both classical and quantum information (the EACQ formalism). This formalism unifies the entanglement-assisted formalism and classical error correction, and includes encoding, error correction, and decoding steps such that the encoded quantum and classical information can be correctly recovered by the receiver. We formally define this kind of quantum code using both stabilizer and symplectic language, and derive the appropriate error-correcting conditions. We give several examples to demonstrate the construction of such codes.

[1]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[2]  D. Poulin Stabilizer formalism for operator quantum error correction. , 2005, Physical review letters.

[3]  R. Spekkens,et al.  Quantum Error Correcting Subsystems are Unitarily Recoverable Subsystems , 2006, quant-ph/0608045.

[4]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[5]  Achim Kempf,et al.  Generalization of quantum error correction via the Heisenberg picture. , 2006, Physical review letters.

[6]  M. Nielsen,et al.  Algebraic and information-theoretic conditions for operator quantum error correction , 2005, quant-ph/0506069.

[7]  David Poulin,et al.  Unified and generalized approach to quantum error correction. , 2004, Physical review letters.

[8]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[9]  Pradeep Kiran Sarvepalli,et al.  Clifford Code Constructions of Operator Quantum Error-Correcting Codes , 2006, IEEE Transactions on Information Theory.

[10]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[11]  Pradeep Kiran Sarvepalli,et al.  Subsystem Codes , 2006, ArXiv.

[12]  Igor Devetak,et al.  Correcting Quantum Errors with Entanglement , 2006, Science.

[13]  David W. Kribs,et al.  Quantum error correction of observables , 2007, 0705.1574.

[14]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[15]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[16]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[17]  I. Devetak,et al.  General entanglement-assisted quantum error-correcting codes , 2007, 2007 IEEE International Symposium on Information Theory.

[18]  I. Devetak,et al.  Entanglement-assisted quantum quasicyclic low-density parity-check codes , 2008, 0803.0100.

[19]  D. Bacon Operator quantum error-correcting subsystems for self-correcting quantum memories , 2005, quant-ph/0506023.

[20]  N. Sloane,et al.  Quantum error correction via codes over GF(4) , 1996, Proceedings of IEEE International Symposium on Information Theory.

[21]  Garry Bowen Entanglement required in achieving entanglement-assisted channel capacities , 2002 .