Long-range Finnis-Sinclair potentials for f.c.c. metallic alloys

Abstract Many-body, long-range potentials of a Finnis-Sinclair type are formulated for the atomistic description of binary f.c.c. metallic alloys. These potentials are generalizations of the scheme constructed by Sutton and Chen (1990), for the atomistic modelling of f.c.c. elemental metals. The parameters for the alloy potentials are obtained directly from the parameters for the elemental metals, without any further adjustable fitting. Lattice parameters, elastic constants and enthalpy of formation of 45 binary, random f.c.c. alloys are calculated.

[1]  V. Vítek,et al.  Interatomic potentials for atomistic studies of defects in binary alloys , 1982 .

[2]  J. Pethica,et al.  Inelastic flow processes in nanometre volumes of solids , 1990 .

[3]  A. Sutton,et al.  Long-range Finnis–Sinclair potentials , 1990 .

[4]  Adrian P. Sutton,et al.  An atomistic study of tilt grain boundaries with substitutional impurities , 1982 .

[5]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[6]  M. Finnis,et al.  A simple empirical N-body potential for transition metals , 1984 .

[7]  David J. Srolovitz,et al.  Atomistic Simulation of Materials , 1989 .

[8]  Parrinello,et al.  Au(100) surface reconstruction. , 1986, Physical review letters.

[9]  M. Born,et al.  Dynamical Theory of Crystal Lattices , 1954 .

[10]  T. Reed,et al.  On a Mixture Rule for the Exponential‐6 Potential , 1972 .

[11]  G. Ackland,et al.  Simple N-body potentials for the noble metals and nickel , 1987 .

[12]  Vítek,et al.  Many-body potentials and atomic-scale relaxations in noble-metal alloys. , 1990, Physical review. B, Condensed matter.

[13]  A. Sutton Temperature-dependent interatomic forces , 1989 .

[14]  W. B. Pearson,et al.  A handbook of lattice spacings and structures of metals and alloys , 1958 .

[15]  R. Kass,et al.  Total cross section for electron-positron annihilation into hadron final states in the upsilon energy region , 1984 .

[16]  Herbert F. Wang,et al.  Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook , 1971 .

[17]  T. Reed,et al.  Mixture Rules for the Mie (n, 6) Intermolecular Pair Potential and the Dymond–Alder Pair Potential , 1971 .

[18]  V. Heine Electronic Structure from the Point of View of the Local Atomic Environment , 1980 .