Ion-trap measurements of electric-field noise near surfaces

Electric-field noise near surfaces is a common problem in diverse areas of physics, and a limiting factor for many precision measurements. There are multiple mechanisms by which such noise is generated, many of which are poorly understood. Laser-cooled, trapped ions provide one of the most sensitive systems to probe electric-field noise at MHz frequencies and over a distance range 30 - 3000 $\mu$m from the surface. Over recent years numerous experiments have reported spectral densities of electric-field noise inferred from ion heating-rate measurements and several different theoretical explanations for the observed noise characteristics have been proposed. This paper provides an extensive summary and critical review of electric-field noise measurements in ion traps, and compares these experimental findings with known and conjectured mechanisms for the origin of this noise. This reveals that the presence of multiple noise sources, as well as the different scalings added by geometrical considerations, complicate the interpretation of these results. It is thus the purpose of this review to assess which conclusions can be reasonably drawn from the existing data, and which important questions are still open. In so doing it provides a framework for future investigations of surface-noise processes.

[1]  Herbert Walther,et al.  Novel miniature ion traps , 1993 .

[2]  Simulations of the rf heating rates in a linear quadrupole ion trap , 2005 .

[3]  S. Lamoreaux,et al.  Observation of the thermal Casimir force , 2010, 1011.5219.

[4]  J. Johnson Thermal Agitation of Electricity in Conductors , 1928 .

[5]  Ruth H. Pater,et al.  Nuclear Instruments and Methods in Physics Research. Section B; Microstructural Characterization of Semi-Interpenetrating Polymer Networks by Positron Lifetime Spectroscopy , 1998 .

[6]  David Leibrandt,et al.  Suppression of heating rates in cryogenic surface-electrode ion traps. , 2007, Physical review letters.

[7]  Pablo Angueira,et al.  Indoor Radio Noise Long-Term Measurements in Medium Wave Band in Buildings of City Areas in the North of Spain , 2011, IEEE Antennas and Wireless Propagation Letters.

[8]  Bell,et al.  Coaxial-resonator-driven rf (Paul) trap for strong confinement. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[9]  K. Brown,et al.  Techniques for Microwave Near-Field Quantum Control of Trapped Ions , 2012, 1211.6554.

[10]  L. B. Linford Recent Developments in the Study of the External Photoelectric Effect , 1933 .

[11]  Richard J. Hughes,et al.  Cryptography, quantum computation and trapped ions , 1998, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[12]  D. Joag,et al.  Noise in field-induced electron emission from graphite composite : spectral density and autocorrelation investigations , 1991 .

[13]  Patrick Gill,et al.  Improved three-dimensional control of a single strontium ion in an endcap trap , 2001 .

[14]  Jr.,et al.  Efficient photoionization loading of trapped ions with ultrafast pulses , 2006, quant-ph/0608043.

[15]  E. Knill,et al.  Single-qubit-gate error below 10 -4 in a trapped ion , 2011, 1104.2552.

[16]  Carsten Henkel,et al.  Noise from metallic surfaces: Effects of charge diffusion , 2008 .

[17]  P. Rabl,et al.  Microscopic model of electric-field-noise heating in ion traps , 2011, 1106.1949.

[18]  G. Falci,et al.  1 / f noise: Implications for solid-state quantum information , 2013, 1304.7925.

[19]  R. Ozeri,et al.  Quantum control of 88Sr+ in a miniature linear Paul trap , 2011, 1105.5773.

[20]  F. Schmidt-Kaler,et al.  Motional sidebands and direct measurement of the cooling rate in the resonance fluorescence of a single trapped ion. , 2000, Physical review letters.

[21]  J. Franzen,et al.  The non-linear resonance ion trap. Part 2. A general theoretical analysis , 1993 .

[22]  C. F. Roos,et al.  Experimental quantum-information processing withC43a+ions , 2008, 0804.1261.

[23]  D. Leibfried,et al.  Near-ground-state transport of trapped-ion qubits through a multidimensional array , 2011, 1106.5005.

[24]  J. E. Bridges,et al.  Geometrical Effects on Shielding Effectiveness at Low Frequencies , 1966 .

[25]  Two-species Coulomb chains for quantum information , 2001 .

[26]  S. Webster,et al.  Ground-State Cooling of a Trapped Ion Using Long-Wavelength Radiation. , 2015, Physical review letters.

[27]  E. Fischer Die dreidimensionale Stabilisierung von Ladungsträgern in einem Vierpolfeld , 1959 .

[28]  David P. DiVincenzo,et al.  Quantum information and computation , 2000, Nature.

[29]  Walther,et al.  Chaos and order of laser-cooled ions in a Paul trap. , 1989, Physical review. A, General physics.

[30]  Christian Kurtsiefer,et al.  Experimental study of anomalous heating and trap instabilities in a microscopic 137 Ba ion trap , 2002 .

[31]  J J García-Ripoll,et al.  Speed optimized two-qubit gates with laser coherent control techniques for ion trap quantum computing. , 2003, Physical review letters.

[32]  J M Amini,et al.  High-fidelity transport of trapped-ion qubits through an X-junction trap array. , 2009, Physical review letters.

[33]  Jeremy Sage,et al.  Reduction of trapped ion anomalous heating by in situ surface plasma cleaning , 2015 .

[34]  R. H. Good,et al.  Thermionic Emission, Field Emission, and the Transition Region , 1956 .

[35]  Bo N. J. Persson,et al.  Near-field radiative heat transfer and noncontact friction , 2007 .

[36]  L. Vandamme,et al.  Thermal equilibrium noise with 1/f spectrum from frequency independent dielectric losses in barium strontium titanate , 2010 .

[37]  J. Britton,et al.  Toward scalable ion traps for quantum information processing , 2009, 0909.2464.

[38]  Gerd Leuchs,et al.  Stylus ion trap for enhanced access and sensing , 2009 .

[39]  F. G. Major,et al.  Charged Particle Traps II , 2009 .

[40]  P. Hänggi,et al.  Reaction-rate theory: fifty years after Kramers , 1990 .

[41]  C. Speake,et al.  Forces between conducting surfaces due to spatial variations of surface potential. , 2003, Physical review letters.

[42]  P. Zoller,et al.  A scalable quantum computer with ions in an array of microtraps , 2000, Nature.

[43]  John Lekner,et al.  Electrostatics of two charged conducting spheres , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[44]  I. Chuang,et al.  High fidelity quantum gates with ions in cryogenic microfabricated ion traps , 2008 .

[45]  D Schuster,et al.  Cryogenic ion trapping systems with surface-electrode traps. , 2008, The Review of scientific instruments.

[46]  P. Anderson,et al.  Anomalous low-temperature thermal properties of glasses and spin glasses , 1972 .

[47]  T. Coudreau,et al.  Electric field noise above surfaces: A model for heating rate scaling law in ion traps , 2008, CLEO/Europe - EQEC 2009 - European Conference on Lasers and Electro-Optics and the European Quantum Electronics Conference.

[48]  S Schlamminger,et al.  Temporal extent of surface potentials between closely spaced metals. , 2008, Physical review letters.

[49]  K. Mølmer,et al.  QUANTUM COMPUTATION WITH IONS IN THERMAL MOTION , 1998, quant-ph/9810039.

[50]  D. Kielpinski,et al.  Millikelvin spatial thermometry of trapped ions , 2011, 1106.1708.

[51]  V. Zhdanov,et al.  Arrhenius parameters for rate processes on solid surfaces , 1991 .

[52]  P. Schwinberg,et al.  Precision mass measurements in the UW-PTMS and the electron's , 1995 .

[53]  Hinds,et al.  Direct measurement of the van der Waals interaction between an atom and its images in a micron-sized cavity. , 1992, Physical review letters.

[54]  Heating rates in a thin ion trap for microcavity experiments , 2012 .

[55]  Jacob L. Zar Measurement Of Low Resistance and the ac Resistance of Superconductors , 1963 .

[56]  P. Zoller,et al.  Brownian motion of a parametric oscillator: A model for ion confinement in radio frequency traps , 1986 .

[57]  David J. Wineland,et al.  Minimization of ion micromotion in a Paul trap , 1998 .

[58]  M. Kanda Standard probes for electromagnetic field measurements , 1993 .

[59]  Wineland,et al.  Young's interference experiment with light scattered from two atoms. , 1993, Physical review letters.

[60]  J. Cole,et al.  Measuring the temperature dependence of individual two-level systems by direct coherent control. , 2010, Physical review letters.

[61]  H. Hoinkes The physical interaction potential of gas atoms with single-crystal surfaces, determined from gas-surface diffraction experiments , 1980 .

[62]  K. R. Brown,et al.  Microwave quantum logic gates for trapped ions , 2011, Nature.

[63]  W A Phillips Two-level states in glasses , 1987 .

[64]  Low temperature dynamics and laser-cooling of two-species Coulomb chains for quantum logic , 2000, quant-ph/0005082.

[65]  J. Hecker Denschlag,et al.  Long-term drifts of stray electric fields in a Paul trap , 2013, 1305.6826.

[66]  Patrick Gill,et al.  A monolithic array of three-dimensional ion traps fabricated with conventional semiconductor technology. , 2012, Nature nanotechnology.

[67]  Noise spectra resulting from diffusion processes in a cylindrical geometry , 1965 .

[68]  R. Blatt,et al.  Quantum simulations with trapped ions , 2011, Nature Physics.

[69]  C. Kleint Experimente zum Funkelrauschen bei Feldemission und Vergleich mit theoretischen Vorstellungen , 1963 .

[70]  Winfried K. Hensinger,et al.  Microfabricated ion traps , 2011, 1101.3207.

[71]  A. van der Ziel,et al.  Noise in field emission diodes , 1966 .

[72]  D. M. Lucas,et al.  Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect , 2009, 0909.3272.

[73]  A. Sinclair,et al.  Zero-point cooling and heating-rate measurements of a single Sr+88 ion , 2007 .

[74]  Oxford ion-trap quantum computing project , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[75]  Bernard Yurke,et al.  Modeling ion trap thermal noise decoherence , 2007, Quantum Inf. Comput..

[76]  Phillips,et al.  Special relativity and the single antiproton: Fortyfold improved comparison of p-bar and p charge-to-mass ratios. , 1995, Physical review letters.

[77]  D. M. Lucas,et al.  Heating rate and electrode charging measurements in a scalable, microfabricated, surface-electrode ion trap , 2011, 1105.4864.

[78]  A. Dantan,et al.  Positioning of the rf potential minimum line of a linear Paul trap with micrometer precision , 2009, 0905.3147.

[79]  David J. Wineland,et al.  Cryogenic linear ion trap for accurate spectroscopy , 1996 .

[80]  A Walther,et al.  Controlling fast transport of cold trapped ions. , 2012, Physical review letters.

[81]  King,et al.  Generation of nonclassical motional states of a trapped atom. , 1996, Physical review letters.

[82]  H. Walther,et al.  Phase transitions of stored laser-cooled ions , 1988, Nature.

[83]  P. Angueira,et al.  Indoor noise measurements in medium wave band , 2010 .

[84]  H. Dehmelt,et al.  Radiative Cooling of an Electrodynamically Contained Proton Gas , 1969 .

[85]  F. Schmidt-Kaler,et al.  Coherent manipulation of a 40Ca+ spin qubit in a micro ion trap , 2009, 0902.2826.

[86]  R. B. Blakestad,et al.  Transport of trapped-ion qubits within a scalable quantum processor , 2010 .

[87]  M. Drewsen,et al.  Efficient ground-state cooling of an ion in a large room-temperature linear Paul trap with a sub-Hertz heating rate , 2012 .

[88]  Sub-millikelvin spatial thermometry of a single Doppler-cooled ion in a Paul trap , 2012, 1203.0177.

[89]  H. Dehmelt,et al.  Demonstration of new Paul–Straubel trap for trapping single ions , 1991 .

[90]  G. Ma,et al.  Spectral analysis of adsorbate induced field-emission flicker noise. , 1985 .

[91]  K. Pyka,et al.  A high-precision segmented Paul trap with minimized micromotion for an optical multiple-ion clock , 2012, 1206.5111.

[92]  D. M. Lucas,et al.  A microfabricated ion trap with integrated microwave circuitry , 2012, 1210.3272.

[93]  D M Lucas,et al.  Reduction of heating rate in a microfabricated ion trap by pulsed-laser cleaning , 2011, 1110.1486.

[94]  M. Harlander,et al.  Spatially-resolved potential measurement with ion crystals , 2011, 1105.0604.

[95]  Shannon X. Wang Quantum gates, sensors, and systems with trapped ions , 2012 .

[96]  H. Nyquist Thermal Agitation of Electric Charge in Conductors , 1928 .

[97]  S. Arrhenius,et al.  ON THE REACTION VELOCITY OF THE INVERSION OF CANE SUGAR BY ACIDS , 1967 .

[98]  C. Monroe,et al.  Scaling and suppression of anomalous heating in ion traps. , 2006, Physical review letters.

[99]  W. Paul Electromagnetic traps for charged and neutral particles , 1990 .

[100]  C. Monroe,et al.  Cooling the Collective Motion of Trapped Ions to Initialize a Quantum Register , 1998, quant-ph/9803023.

[101]  D. Wineland,et al.  Frequency Ratio of Al+ and Hg+ Single-Ion Optical Clocks; Metrology at the 17th Decimal Place , 2008, Science.

[102]  Andrew M. Steane The ion trap quantum information processor , 1996 .

[103]  T. R. Tan,et al.  Coherent diabatic ion transport and separation in a multizone trap array. , 2012, Physical review letters.

[104]  Umran S. Inan,et al.  Penetration of lightning MF signals to the upper ionosphere over VLF ground-based transmitters , 2009 .

[105]  Patrick Gill,et al.  Controlled photoionization loading of 88Sr+ for precision ion-trap experiments , 2007 .

[106]  T. Kenny,et al.  Noncontact friction and force fluctuations between closely spaced bodies. , 2001, Physical review letters.

[107]  David J. Wineland,et al.  Principles of the stored ion calorimeter , 1975 .

[108]  R. B. Blakestad,et al.  Fluorescence during Doppler cooling of a single trapped atom , 2007, 0707.1314.

[109]  E. Knill,et al.  Simplified motional heating rate measurements of trapped ions , 2007, 0707.1528.

[110]  J. Home Quantum science and metrology with mixed-species ion chains , 2013, 1306.5950.

[111]  J. Cirac,et al.  Quantum Computations with Cold Trapped Ions. , 1995, Physical review letters.

[112]  Isaac Chuang,et al.  Bright source of cold ions for surface-electrode traps , 2007, physics/0702025.

[113]  Isaac L. Chuang,et al.  Laser-induced charging of microfabricated ion traps , 2011, 1108.0092.

[114]  P. Rabl,et al.  Influence of monolayer contamination on electric-field-noise heating in ion traps , 2012, 1210.0044.

[115]  Clare C. Yu,et al.  Decoherence in Josephson qubits from dielectric loss. , 2005, Physical review letters.

[116]  David J. Wineland,et al.  Surface-electrode architecture for ion-trap quantum information processing , 2005, Quantum Inf. Comput..

[117]  K. Brown,et al.  Coupled quantized mechanical oscillators , 2010, Nature.

[118]  F. Schmidt-Kaler,et al.  Fabrication and heating rate study of microscopic surface electrode ion traps , 2010, 1009.2834.

[119]  Rajeev J Ram,et al.  Ion traps fabricated in a CMOS foundry , 2014, 1406.3643.

[120]  I. Chuang,et al.  Finite-geometry models of electric field noise from patch potentials in ion traps , 2011, 1109.2995.

[121]  D. Engelke,et al.  Spectroscopy of the electric-quadrupole transition 2 S 1/2 (F=0)- 2 D 3/2 (F=2) in trapped 171 Yb + , 2000 .

[122]  H. Häffner,et al.  How to realize a universal quantum gate with trapped ions , 2003, quant-ph/0312162.

[123]  J. Camp,et al.  Effect of crystallites on surface potential variations of Au and graphite , 1992 .

[124]  Curtis Volin,et al.  Controlling trapping potentials and stray electric fields in a microfabricated ion trap through design and compensation , 2012, 1204.4147.

[125]  Manuel Vogel,et al.  Temperature measurement of a single ion in a Penning trap , 2004 .

[126]  G. Moorhead,et al.  The fall of charged particles under gravity : a study of experimental problems , 1992 .

[127]  K. Brown,et al.  100-fold reduction of electric-field noise in an ion trap cleaned with in situ argon-ion-beam bombardment. , 2012, Physical review letters.

[128]  Curtis Volin,et al.  Reliable transport through a microfabricated X-junction surface-electrode ion trap , 2012, 1210.3655.

[129]  C. Monroe,et al.  Decoherence of quantum superpositions through coupling to engineered reservoirs , 2000, Nature.

[130]  Patrick Gill,et al.  Monolithic microfabricated ion trap chip design for scaleable quantum processors , 2006 .

[131]  M. Harlander,et al.  Deterministic reordering of 40Ca+ ions in a linear segmented Paul trap , 2009, 0906.5335.

[132]  G. Mutinati,et al.  Synthesis of High-Aspect-Ratio CuO Nanowires for Conductometric Gas Sensing , 2011 .

[133]  G. Stutter,et al.  Resolved-Sideband Laser Cooling in a Penning Trap. , 2014, Physical review letters.

[134]  R. B. Blakestad,et al.  Microfabricated surface-electrode ion trap for scalable quantum information processing. , 2006, Physical review letters.

[135]  P. Antoniewicz Surface-Induced Dipole Moments of Adsorbed Atoms , 1974 .

[136]  J. E. Bridges An update on the circuit approach to calculate shielding effectiveness , 1988 .

[137]  K. Pyka,et al.  Linear Paul trap design for an optical clock with Coulomb crystals , 2011, 1109.6152.

[138]  David J. Wineland,et al.  Cooling methods in ion traps , 1995 .

[139]  R. Blatt,et al.  Interferometric thermometry of a single sub-Doppler-cooled atom , 2012 .

[140]  Girish S. Agarwal,et al.  Quantum electrodynamics in the presence of dielectrics and conductors. I. Electromagnetic-field response functions and black-body fluctuations in finite geometries , 1975 .

[141]  J. Britton,et al.  Microfabrication techniques for trapped ion quantum information processing , 2010, 1008.2222.

[142]  Karl Berggren,et al.  Superconducting microfabricated ion traps , 2010, 1010.6108.

[143]  F. Schmidt-Kaler,et al.  Sideband cooling and coherent dynamics in a microchip multi-segmented ion trap , 2007, 0712.3249.

[144]  Wineland,et al.  Laser cooling to the zero-point energy of motion. , 1989, Physical review letters.

[145]  R. Fox,et al.  Classical Electrodynamics, 3rd ed. , 1999 .

[146]  C. F. Roos,et al.  Deterministic entanglement of ions in thermal states of motion , 2008, 0810.0670.

[147]  Rainer Blatt,et al.  Two-dimensional arrays of radio-frequency ion traps with addressable interactions , 2011, 1103.5428.

[148]  C. F. Roos,et al.  Sympathetic ground-state cooling and coherent manipulation with two-ion crystals , 2000, quant-ph/0009031.

[149]  Jeremy M. Sage,et al.  Loading of a surface-electrode ion trap from a remote, precooled source , 2012, 1205.6379.

[150]  M. Dipirro,et al.  THERMAL AND ELECTRICAL CONDUCTIVITY MEASUREMENTS OF CDA 510 PHOSPHOR BRONZE , 2010 .

[151]  Jakob Reichel,et al.  Single ion coupled to an optical fiber cavity. , 2012, Physical review letters.

[152]  Diffusion anisotropy of oxygen and of tungsten on the tungsten (211) plane , 1986 .

[153]  J. Chiaverini,et al.  Insensitivity of the rate of ion motional heating to trap-electrode material over a large temperature range , 2013, 1310.4385.

[154]  R. Blatt,et al.  Entangled states of trapped atomic ions , 2008, Nature.

[155]  S. Kleineidam,et al.  Higher order non-linear resonances in a Paul trap , 1996 .

[156]  Experiments with an isolated subatomic particle ar rest , 1990 .

[157]  Isaac L. Chuang,et al.  Demonstration of a quantum logic gate in a cryogenic surface-electrode ion trap , 2009, 0912.4892.

[158]  Wei Xu,et al.  Characterization of electrode surface roughness and its impact on ion trap mass analysis. , 2009, Journal of mass spectrometry : JMS.

[159]  H. Poritsky,et al.  Eddy-current losses in a semi-infinite solid due to a nearby alternating current , 1954, Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics.

[160]  Peter Maunz,et al.  Single qubit manipulation in a microfabricated surface electrode ion trap , 2013, 1306.1269.

[161]  Janus H. Wesenberg,et al.  Electrostatics of surface-electrode ion traps , 2008, 0808.1623.

[162]  D. Kielpinski,et al.  Fast gates for ion traps by splitting laser pulses , 2012, 1211.7156.

[163]  Boris B. Blinov,et al.  Zero-point cooling and low heating of trapped {sup 111}Cd{sup +} ions , 2004, quant-ph/0404142.

[164]  George Chen,et al.  Electric stress computation ‐ a needle‐plane electrode system with space charge effects , 1996 .

[165]  M. A. Rowe,et al.  Heating of trapped ions from the quantum ground state , 2000 .

[166]  J. Britton,et al.  Quantum information processing with trapped ions , 2002, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[167]  David J. Wineland,et al.  Surface science for improved ion traps , 2013 .

[168]  M. Wilkens,et al.  Loss and heating of particles in small and noisy traps , 1999, quant-ph/9906128.

[169]  R. Blatt,et al.  Compact radio-frequency resonator for cryogenic ion traps. , 2012, The Review of scientific instruments.

[170]  I. Chuang,et al.  Microfabricated surface ion trap on a high-finesse optical mirror. , 2010, Optics letters.

[171]  David J. Wineland,et al.  Experimental Primer on the Trapped Ion Quantum Computer , 1998 .

[172]  H. K. Wickramasinghe,et al.  Surface investigations with a Kelvin probe force microscope , 1992 .

[173]  John J. Bollinger,et al.  Temperature and heating rate of ion crystals in Penning traps , 2004 .

[174]  E. Knill,et al.  Tunable spin–spin interactions and entanglement of ions in separate potential wells , 2014, Nature.

[175]  P. M. Horn,et al.  Low-frequency fluctuations in solids: 1/f noise , 1981 .

[176]  Jaroslaw Labaziewicz,et al.  Temperature dependence of electric field noise above gold surfaces. , 2008, Physical review letters.

[177]  G. I. Opat,et al.  Observations of the effects of adsorbates on patch potentials , 1992 .

[178]  Michael Niedermayr,et al.  Cryogenic surface ion trap based on intrinsic silicon , 2014 .

[179]  E. A. Hessels,et al.  Pumped helium system for cooling positron and electron traps to 1.2 K , 2011 .

[180]  Versatile ytterbium ion trap experiment for operation of scalable ion-trap chips with motional heating and transition-frequency measurements , 2010, 1007.4010.

[181]  D. James Quantum dynamics of cold trapped ions with application to quantum computation , 1997, quant-ph/9702053.

[182]  R. Blatt,et al.  Trapped-ion antennae for the transmission of quantum information , 2010, Nature.

[183]  H. Dehmelt,et al.  "Bolometric" Technique for the rf Spectroscopy of Stored Ions , 1968 .

[184]  J. Britton,et al.  Scalable arrays of rf Paul traps in degenerate Si , 2009, 0908.1591.

[185]  S. Lamoreaux,et al.  Casimir force and in situ surface potential measurements on nanomembranes. , 2012, Physical review letters.

[186]  King,et al.  Resolved-sideband Raman cooling of a bound atom to the 3D zero-point energy. , 1995, Physical review letters.

[187]  C. Monroe,et al.  Experimental Issues in Coherent Quantum-State Manipulation of Trapped Atomic Ions , 1997, Journal of research of the National Institute of Standards and Technology.

[188]  F. Leupold,et al.  Quantum control of the motional states of trapped ions through fast switching of trapping potentials , 2012, 1208.3986.

[189]  R Gomer Diffusion of adsorbates on metal surfaces , 1990 .

[190]  W. A. Phillips,et al.  Tunneling states in amorphous solids , 1972 .

[191]  Micro-fabricated stylus ion trap. , 2013, The Review of scientific instruments.

[192]  J. Camp,et al.  Macroscopic variations of surface potentials of conductors , 1991 .

[193]  M. Harlander Architecture for a scalable ion-trap quantum computer , 2012 .

[194]  Wolfgang Hansel,et al.  Trapped-ion probing of light-induced charging effects on dielectrics , 2010, 1004.4842.

[195]  Scott T. Sullivan,et al.  Measurement of the Coulomb logarithm in a radio-frequency Paul trap. , 2012, Physical review letters.

[196]  Erick Ulin-Avila,et al.  Surface noise analysis using a single-ion sensor , 2014 .

[197]  A. M. Thommesen,et al.  Isotope selective loading of an ion trap using resonance-enhanced two-photon ionization , 2000 .

[198]  Spencer D. Fallek,et al.  Ball-grid array architecture for microfabricated ion traps , 2014, 1412.5576.

[199]  F. Schmidt-Kaler,et al.  Ion strings for quantum gates , 1998 .

[200]  M. Neeley Process Tomography of Quantum Memory in a Josephson Phase Qubit , 2008 .

[201]  B. Lundqvist,et al.  Neglected adsorbate interactions behind diffusion prefactor anomalies on metals , 2001 .

[202]  C. Monroe,et al.  Quantum dynamics of single trapped ions , 2003 .

[203]  Ground state cooling, quantum state engineering and study of decoherence of ions in Paul traps , 2000, quant-ph/0003096.

[204]  R. E. Burgess Contact Noise in Semiconductors , 1953 .

[205]  Martin Wilkens,et al.  Heating of trapped atoms near thermal surfaces , 1999 .

[206]  K. Brown,et al.  Modular cryostat for ion trapping with surface-electrode ion traps. , 2013, The Review of scientific instruments.

[207]  J. Hughes,et al.  Transport of Quantum States and Separation of Ions in a Dual Rf Ion Trap * , 2002 .

[208]  I. Chuang,et al.  Surface-electrode point Paul trap , 2010, 1008.1603.

[209]  L. Hornekær,et al.  Formation process of large ion Coulomb crystals in linear Paul traps , 2002 .

[210]  E. Cornell,et al.  Measuring Electric Fields from Surface Contaminants with Neutral Atoms , 2007, 0705.2027.

[211]  E. A. Cornell,et al.  Measurement of the Casimir-Polder force through center-of-mass oscillations of a Bose-Einstein condensate , 2005 .

[212]  Isaac L. Chuang,et al.  Demonstration of a scalable, multiplexed ion trap for quantum information processing , 2009, Quantum Inf. Comput..

[213]  J. Chiaverini,et al.  Measurement of ion motional heating rates over a range of trap frequencies and temperatures , 2014, 1412.5119.

[214]  Michael Niedermayr,et al.  Operation of a planar-electrode ion-trap array with adjustable RF electrodes , 2014 .

[215]  D. Stick,et al.  Planar ion trap geometry for microfabrication , 2004 .

[216]  F. Schmidt-Kaler,et al.  Quantum State Engineering on an Optical Transition and Decoherence in a Paul Trap , 1999 .