Safety and efficacy of opicinumab in patients with relapsing multiple sclerosis (SYNERGY): a randomised, placebo-controlled, phase 2 trial
暂无分享,去创建一个
D. Centonze | G. Marfia | D. Arnold | M. Valis | X. Montalban | P. Calabresi | H. Hartung | M. Freedman | R. Rudick | E. Fisher | A. Ghezzi | M. Zaffaroni | L. Vécsei | N. Evangelou | G. Giovannoni | K. Selmaj | S. Sheikh | M. Świat | H. Rossman | S. Freedman | R. Capra | G. Pardo | F. Patti | R. Hintzen | G. Izquierdo | E. Silber | S. Komoly | A. Stępień | A. Uccelli | Lei Xu | K. Edwards | Y. Lapierre | S. Newsome | J. Drulovic | R. Hupperts | M. Debouverie | O. Gout | A. Tourbah | P. Clavelou | A. Deykin | S. Mi | E. Evdoshenko | D. Cadavid | R. Naismith | P. Qian | S. Wiertlewski | E. A. Morales | T. Zieliński | A. Rodríguez-Antigüedad | M. Mellion | F. Khabirov | P. Hradílek | M. Maciejowski | R. Ampapa | C. Laganke | M. Vachová | A. Potemkowski | R. Arroyo | E. Meluzínová | F. Jacques | R. Bonek | G. Jakab | Victoria Fernández Sánchez | S. M. Yélamos | L. Grimaldi | I. Chang | A. A. Khedr | W. Fryze | H. Hertmanowska | Jan Ilkowski | G. Kłodowska-Duda | A. García-Merino | A. Boyko | Y. Chai | Bing Zhu | G. Tončev | Wenting Cheng | A. Stepniewska | S. Prokopenko | Ó. Fernández | Jie Li | I. Kovářová | B. Hendin | Yiwei Zhang | S. Green | Martin Belkin | M. Gavrić-Kezić | E. Ivashinenkova | S. Kostic | M. Kremenchuzky | F. G. Maison | R. Murray | V. Nguyen | Delia Oreja | E. Pasechnik | C. Rozsa | F. S. Lopez | T. Trushnikova | A. García‐Merino | G. Toncev | P. Hradilek | F. Maison | Gordana Toncev
[1] G. Plant,et al. Assessment of Opicinumab in Acute Optic Neuritis Using Multifocal Visual Evoked Potential , 2018, CNS Drugs.
[2] G. Plant,et al. Predictors of response to opicinumab in acute optic neuritis , 2018, Annals of clinical and translational neurology.
[3] D. Arnold,et al. Effect of natalizumab on disease progression in secondary progressive multiple sclerosis (ASCEND): a phase 3, randomised, double-blind, placebo-controlled trial with an open-label extension , 2018, The Lancet Neurology.
[4] A. Ranger,et al. Anti-LINGO-1 has no detectable immunomodulatory effects in preclinical and phase 1 studies , 2017, Neurology: Neuroimmunology & Neuroinflammation.
[5] Theodore V. Tselios,et al. Multiple Sclerosis: Immunopathology and Treatment Update , 2017, Brain sciences.
[6] C. Henderson,et al. LINGO-1 Regulates Oligodendrocyte Differentiation through the Cytoplasmic Gelsolin Signaling Pathway , 2017, The Journal of Neuroscience.
[7] S. Galetta,et al. Safety and efficacy of opicinumab in acute optic neuritis (RENEW): a randomised, placebo-controlled, phase 2 trial , 2017, The Lancet Neurology.
[8] Jeffrey A. Cohen,et al. The EDSS-Plus, an improved endpoint for disability progression in secondary progressive multiple sclerosis , 2017, Multiple sclerosis.
[9] D. McTigue,et al. A silver lining of neuroinflammation: Beneficial effects on myelination , 2016, Experimental Neurology.
[10] H. Hartung,et al. Pushing Forward: Remyelination as the New Frontier in CNS Diseases , 2016, Trends in Neurosciences.
[11] Ludwig Kappos,et al. Oral fingolimod in primary progressive multiple sclerosis (INFORMS): a phase 3, randomised, double-blind, placebo-controlled trial , 2016, The Lancet.
[12] O. Ciccarelli,et al. Nonconventional MRI and microstructural cerebral changes in multiple sclerosis , 2015, Nature Reviews Neurology.
[13] Mike P. Wattjes,et al. Remyelination therapy goes to trial for multiple sclerosis , 2014, Neurology: Neuroimmunology & Neuroinflammation.
[14] David H. Miller,et al. Imaging outcomes for trials of remyelination in multiple sclerosis , 2014, Journal of Neurology, Neurosurgery & Psychiatry.
[15] S. Mi,et al. Blocking LINGO-1 as a Therapy to Promote CNS Repair: From Concept to the Clinic , 2013, CNS Drugs.
[16] R. Franklin,et al. Rejuvenation of regeneration in the aging central nervous system. , 2012, Cell stem cell.
[17] Christilyn P. Graff,et al. Exposure Levels of Anti-LINGO-1 Li81 Antibody in the Central Nervous System and Dose-Efficacy Relationships in Rat Spinal Cord Remyelination Models after Systemic Administration , 2011, Journal of Pharmacology and Experimental Therapeutics.
[18] G. Disanto,et al. Heterogeneity in Multiple Sclerosis: Scratching the Surface of a Complex Disease , 2010, Autoimmune diseases.
[19] A. Nazarali,et al. Age-Related and Cuprizone-Induced Changes in Myelin and Transcription Factor Gene Expression and in Oligodendrocyte Cell Densities in the Rostral Corpus Callosum of Mice , 2010, Cellular and Molecular Neurobiology.
[20] A. Chédotal,et al. Promotion of central nervous system remyelination by induced differentiation of oligodendrocyte precursor cells , 2009, Annals of neurology.
[21] D. Arnold,et al. Magnetization transfer ratio evolution with demyelination and remyelination in multiple sclerosis lesions , 2008, Annals of neurology.
[22] Li Wang,et al. LINGO-1 antagonist promotes spinal cord remyelination and axonal integrity in MOG-induced experimental autoimmune encephalomyelitis , 2007, Nature Medicine.
[23] Elizabeth Fisher,et al. Imaging correlates of axonal swelling in chronic multiple sclerosis brains , 2007, Annals of neurology.
[24] J. Chan,et al. NGF Regulates the Expression of Axonal LINGO-1 to Inhibit Oligodendrocyte Differentiation and Myelination , 2007, The Journal of Neuroscience.
[25] Hans Lassmann,et al. Remyelination is extensive in a subset of multiple sclerosis patients. , 2006, Brain : a journal of neurology.
[26] B. Trapp,et al. LINGO-1 negatively regulates myelination by oligodendrocytes , 2005, Nature Neuroscience.
[27] J. Relton,et al. LINGO-1 is a component of the Nogo-66 receptor/p75 signaling complex , 2004, Nature Neuroscience.
[28] L. Jasmin,et al. Remyelination within the CNS: Do Schwann Cells Pave the Way for Oligodendrocytes? , 2002, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.
[29] B. Trapp,et al. Differentiation and Death of Premyelinating Oligodendrocytes in Developing Rodent Brain , 1997, The Journal of cell biology.
[30] E. Cho,et al. Multiple sclerosis: Remyelination of nascent lesions: Remyelination of nascent lesions , 1993 .
[31] G. Devries,et al. Role of adult oligodendrocytes in remyelination after neural injury. , 1992, Journal of neurotrauma.