Bifurcation phenomena in Taylor-Couette flow in a very short annulus

We present the results of an experimental and numerical investigation into Taylor-Couette flow with gap-length to width ratios (Γ = l / d ) ranging from 0.3 to 1.4. Laser-Doppler-velocimetry is used to obtain quantitative information on the bifurcation set experimentally, and novel flow phenomena are uncovered. These results are compared with those obtained using numerical bifurcation techniques applied to a finite-element discretization of the Navier-Stokes equations. In general, the agreement is good and most of the observations are satisfactorily explained.

[1]  W. Velte Stabilitätsverhalten und verzweigung stationärer Lösungen der navier-stokesschen gleichungen , 1964 .

[2]  G. Pfister Deterministic chaos in rotational Taylor-Couette flow , 1985 .

[3]  P. Hall Centrifugal instabilities of circumferential flows in finite cylinders: the wide gap problem , 1982, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[4]  K. Cliffe Numerical calculations of the primary-flow exchange process in the Taylor problem , 1988, Journal of Fluid Mechanics.

[5]  Geoffrey Ingram Taylor Stability of a Viscous Liquid Contained between Two Rotating Cylinders , 1923 .

[6]  W. Velte Stabilität und Verzweigung stationärer Lösungen der Navier-Stokesschen Gleichungen beim Taylorproblem , 1966 .

[7]  T. Brooke Benjamin,et al.  Notes on the multiplicity of flows in the Taylor experiment , 1982, Journal of Fluid Mechanics.

[8]  A. Spence,et al.  The Calculation of High Order Singularities in the Finite Taylor Problem , 1984 .

[9]  K. A. Cliffe,et al.  Numerical calculations of two-cell and single-cell Taylor flows , 1983, Journal of Fluid Mechanics.

[10]  T. Mullin,et al.  A numerical and experimental study of anomalous modes in the Taylor experiment , 1985, Journal of Fluid Mechanics.

[11]  T. Benjamin Bifurcation phenomena in steady flows of a viscous fluid. I. Theory , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[12]  Ahlers,et al.  Tricritical phenomena in rotating Couette-Taylor flow. , 1985, Physical review letters.

[13]  G. Taylor Stability of a Viscous Liquid Contained between Two Rotating Cylinders , 1923 .

[14]  David G. Schaeffer,et al.  Qualitative analysis of a model for boundary effects in the Taylor problem , 1980, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  Gerd Pfister,et al.  Flow in a small annulus between concentric cylinders , 1984, Journal of Fluid Mechanics.

[16]  T. Benjamin,et al.  Bifurcation phenomena in steady flows of a viscous fluid II. Experiments , 1978, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[17]  T. Mullin Mutations of steady cellular flows in the Taylor experiment , 1982, Journal of Fluid Mechanics.

[18]  G. Pfister,et al.  Hardware and Software Implementation of On-Line Velocity Correlation Measurements in Oscillatory and Turbulent Rotational Couette Flow , 1983 .

[19]  H. B. Keller,et al.  Computation of anomalous modes in the Taylor experiment , 1987 .

[20]  T. Mullin,et al.  Anomalous modes in the Taylor experiment , 1981, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[21]  by Arch. Rat. Mech. Anal. , 2022 .

[22]  G. Pfister,et al.  New observations on hysteresis effects in Taylor–Couette flow , 1982 .