Structural Interpretation of Sparse Fault Data Using Graph Theory and Geological Rules

Structural uncertainty exists when associating sparse fault interpretations made from two-dimensional seismic lines or limited outcrop observations. Here, a graph formalism is proposed that describes the problem of associating spatial fault evidence. A combinatorial analysis, relying on this formalism, shows that the number of association scenarios is given by the Bell number, and increases exponentially with the number of pieces of evidence. As a result, the complete exploration of uncertainties is computationally highly challenging. The available prior geological knowledge is expressed by numerical rules to reduce the number of scenarios, and the graph formalism makes structural interpretation easier to reproduce than manual interpretation. The Bron–Kerbosch algorithm, which finds maximal cliques in undirected graphs, is used to detect major possible structures. This framework opens the way to a numerically assisted exploration of uncertainties during structural interpretation.

[1]  Ronald L. Graham,et al.  Concrete Mathematics, a Foundation for Computer Science , 1991, The Mathematical Gazette.

[2]  C. Bond Uncertainty in Structural Interpretation: Lessons to be learnt , 2015 .

[3]  Dave Hale,et al.  3D seismic image processing for faults , 2015 .

[4]  Elizabeth Santiago,et al.  A descriptive study of fracture networks in rocks using complex network metrics , 2016, Comput. Geosci..

[5]  R. Butler,et al.  Exploring the seismic expression of fault zones in 3D seismic volumes , 2016 .

[6]  Jan C. Rivenæs,et al.  A 3D stochastic model integrating depth, fault and property uncertainty for planning robust wells, Njord Field, offshore Norway , 2005, Petroleum Geoscience.

[7]  N. Odling,et al.  Scaling of fracture systems in geological media , 2001 .

[8]  G. Caumon,et al.  Surface-Based 3D Modeling of Geological Structures , 2009 .

[9]  Zhihui Zhu,et al.  Methods to enhance seismic faults and construct fault surfaces , 2017, Comput. Geosci..

[10]  Aric Hagberg,et al.  Exploring Network Structure, Dynamics, and Function using NetworkX , 2008, Proceedings of the Python in Science Conference.

[11]  Pierre Thore,et al.  Structural uncertainties: Determination, management, and applications , 2002 .

[12]  P. Renard,et al.  Impact of a stochastic sequential initiation of fractures on the spatial correlations and connectivity of discrete fracture networks , 2016 .

[13]  C. Mann Uncertainty in geology , 1993 .

[14]  P. Boult,et al.  Exploration Using faults as an aid to horizon mapping in areas of poor 2 D seismic : Otway Basin example , 2007 .

[15]  Samuel T. Thiele,et al.  The topology of geology 2: Topological uncertainty , 2016 .

[16]  Guillaume Caumon,et al.  Method for Stochastic Inverse Modeling of Fault Geometry and Connectivity Using Flow Data , 2012, Mathematical Geosciences.

[17]  I. Manighetti,et al.  Generic along‐strike segmentation of Afar normal faults, East Africa: Implications on fault growth and stress heterogeneity on seismogenic fault planes , 2015 .

[18]  F. Horowitz,et al.  Towards incorporating uncertainty of structural data in 3D geological inversion , 2010 .

[19]  W. Weinzierl,et al.  Volumetric impact of fault perturbation in the first Fresnel zone , 2016 .

[20]  M. Culshaw,et al.  Communicating the risks arising from geohazards , 2003 .

[21]  P. Boult,et al.  Using empirical geological rules to reduce structural uncertainty in seismic interpretation of faults , 2010 .

[22]  Luca Valentini,et al.  The “small-world” topology of rock fracture networks , 2007 .

[23]  J. Walsh,et al.  Displacement Geometry in the Volume Containing a Single Normal Fault , 1987 .

[24]  C. Bron,et al.  Algorithm 457: finding all cliques of an undirected graph , 1973 .

[25]  Guillaume Caumon,et al.  3-D Structural geological models: Concepts, methods, and uncertainties , 2018 .

[26]  C. Bond,et al.  Interpretational variability of structural traps: implications for exploration risk and volume uncertainty , 2015, Special Publications.

[27]  A. Torabi,et al.  Scaling of fault attributes: A review , 2011 .

[28]  R. Schlische,et al.  How do the properties of a pre-existing normal-fault population influence fault development during a subsequent phase of extension? , 2011 .

[29]  L. Holden,et al.  Havana — a fault modeling tool , 2002 .

[30]  I. Davison,et al.  Geometry and late-stage structural evolution of Central Graben salt diapirs, North Sea , 2000 .

[31]  G. Caumon,et al.  Stochastic structural modelling in sparse data situations , 2015 .

[32]  Donald E. Knuth,et al.  The Art of Computer Programming, Volume 4, Fascicle 2: Generating All Tuples and Permutations (Art of Computer Programming) , 2005 .

[33]  B. Lévy,et al.  Stochastic simulations of fault networks in 3D structural modeling. , 2010 .

[34]  J. Wellmann,et al.  Structural geologic modeling as an inference problem: A Bayesian perspective , 2016 .

[35]  D. Sanderson,et al.  The use of topology in fracture network characterization , 2015 .

[36]  Samuel T. Thiele,et al.  The topology of geology 1: Topological analysis , 2016 .

[37]  Enhanced fault imaging from seismic and geological model , 2016 .

[38]  David J. Sanderson,et al.  Graph theory and the analysis of fracture networks , 2019, Journal of Structural Geology.

[39]  J. Kent The Fisher‐Bingham Distribution on the Sphere , 1982 .

[40]  L. Ailleres,et al.  Method and analysis for the upscaling of structural data , 2016 .

[41]  Z. Shipton,et al.  What do you think this is? "Conceptual uncertainty" in geoscience interpretation , 2007 .

[42]  Gabriel Godefroy Modélisation cinématique et stochastique des failles à partir de données éparses pour l’analyse des incertitudes structurales , 2018 .

[43]  B. Walter Réservoirs de socle en contexte extensif : genèse, géométries et circulations de fluides : exemples du rift intracontinental du lac Albert (Ouganda) et de la marge proximale d'Ifni (Maroc) , 2016 .

[44]  Satu Elisa Schaeffer,et al.  Graph Clustering , 2017, Encyclopedia of Machine Learning and Data Mining.

[45]  Akira Tanaka,et al.  The worst-case time complexity for generating all maximal cliques and computational experiments , 2006, Theor. Comput. Sci..

[46]  P. Davy,et al.  A model of fracture nucleation, growth and arrest, and consequences for fracture density and scaling , 2013 .

[47]  Charu C. Aggarwal,et al.  Graph Clustering , 2010, Encyclopedia of Machine Learning and Data Mining.

[48]  Dave Hale,et al.  Methods to compute fault images, extract fault surfaces, and estimate fault throws from 3D seismic images , 2013 .

[49]  J. Caers,et al.  Quantifying structural uncertainty on fault networks using a marked point process within a Bayesian framework , 2017 .

[50]  Guillaume Caumon,et al.  Elements for measuring the complexity of 3D structural models: Connectivity and geometry , 2015, Comput. Geosci..

[51]  F. Cotton,et al.  Self-similarity of the largest-scale segmentation of the faults: Implications for earthquake behavior , 2009 .

[52]  Frédéric Cazals,et al.  A note on the problem of reporting maximal cliques , 2008, Theor. Comput. Sci..

[53]  D. Sanderson,et al.  Deformation within a strike-slip fault network at Westward Ho!, Devon U.K.: Domino vs conjugate faulting , 2011 .

[54]  Guillaume Caumon,et al.  Impact of the en echelon fault connectivity on reservoir flow simulations , 2015 .

[55]  L. Holden,et al.  Stochastic Structural Modeling , 2003 .

[56]  B. Freeman,et al.  Best practice in structural geological analysis , 2005 .

[57]  B. Freeman,et al.  Fault correlation during seismic interpretation , 1990 .

[58]  F. Wellmann,et al.  Methods and uncertainty estimations of 3-D structural modelling in crystalline rocks: a case study , 2017 .

[59]  P. Renard,et al.  Statistical metrics for the characterization of karst network geometry and topology , 2017 .

[60]  G. Caumon,et al.  Sampling the uncertainty associated with segmented normal fault interpretation using a stochastic downscaling method , 2015 .

[61]  M. Jessell,et al.  Towards an integrated inversion of geoscientific data: What price of geology? , 2010 .

[62]  P. Gillespie,et al.  Limitations of dimension and displacement data from single faults and the consequences for data analysis and interpretation , 1992 .

[63]  I. Lecomte,et al.  From mechanical modeling to seismic imaging of faults: A synthetic workflow to study the impact of faults on seismic , 2014 .

[64]  J. Tveranger,et al.  Seismic characterization of fault facies models , 2017 .

[65]  Jie Zhang,et al.  Discrete element modeling of the faulting in the sedimentary cover above an active salt diapir , 2009 .

[66]  G. Yielding The geometry of branch lines , 2016, Special Publications.