Advancing MIM Electronics: Amorphous Metal Electrodes

Effectively controlling quantum mechanical tunneling through an ultrathin dielectric represents a fundamental materials challenge in the quest for high-performance metal-insulatormetal (MIM) diodes. Such diodes are the basis for alternative approaches to conventional thin-fi lm transistor technologies for large-area information displays, [ 1 , 2 ] various types of hot electron transistors, [ 2–6 ] ultrahigh speed discrete or antennacoupled detectors, [ 7–14 ] and optical rectennas. [ 15 ] MIM diodes have been fabricated by anodization, [ 1 ] thermal oxidation, [ 8–11 , 14 ]

[1]  G. Haddad,et al.  Metal-oxide-metal, M-O-M, detector , 1971 .

[2]  Ali Javan,et al.  Mechanism of detection of radiation in a high‐speed metal‐metal oxide‐metal junction in the visible region and at longer wavelengths , 1976 .

[3]  S. M. Sze Physics of semiconductor devices /2nd edition/ , 1981 .

[4]  Parmanand Sharma,et al.  Nanoscale patterning of Zr-Al-Cu-Ni metallic glass thin films deposited by magnetron sputtering. , 2005, Journal of nanoscience and nanotechnology.

[5]  Wolfgang Porod,et al.  Thermal infrared detection using dipole antenna-coupled metal-oxide-metal diodes , 2009 .

[6]  Willem den Boer,et al.  Active matrix liquid crystal displays , 2005 .

[7]  J. Whinnery,et al.  Characteristics of integrated MOM junctions at DC and at optical frequencies , 1978, IEEE Journal of Quantum Electronics.

[8]  Subramanian Krishnan,et al.  Effects of dielectric thickness and contact area on current–voltage characteristics of thin film metal–insulator–metal diodes , 2008 .

[9]  Akira Shimokohbe,et al.  Thermal, Mechanical and Electrical Properties of Pd-Based Thin-Film Metallic Glass , 2001 .

[10]  M. Brunner,et al.  Metal‐oxide‐metal tunneling junctions on Ta and Nb: Background conductivity resulting from different oxide barriers , 1982 .

[11]  J. Simmons Electric Tunnel Effect between Dissimilar Electrodes Separated by a Thin Insulating Film , 1963 .

[12]  K. Ng,et al.  The Physics of Semiconductor Devices , 2019, Springer Proceedings in Physics.

[13]  J. L. Moll Comparison of hot electron and related amplifiers , 1963 .

[14]  M. Ohring The Materials Science of Thin Films , 1991 .

[15]  H. Warlimont,et al.  Amorphous metals driving materials and process innovations , 2001 .

[16]  J. Gilman,et al.  Nanotechnology , 2001 .

[17]  J. Simmons Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film , 1963 .

[18]  Yanfei Gao,et al.  Fatigue-Resistance Enhancements by Glass-Forming Metallic Films , 2007 .

[19]  Parmanand Sharma,et al.  Nano-fabrication with metallic glass—an exotic material for nano-electromechanical systems , 2007, Nanotechnology.

[20]  D. Keszler,et al.  Solution-Processed Aluminum Oxide Phosphate Thin-Film Dielectrics , 2007 .

[21]  C. Mead,et al.  Experimental Determination ofE−kRelationship in Electron Tunneling , 1966 .

[22]  J. Dugdale The Electrical Properties of Disordered Metals: Frontmatter , 1995 .

[23]  Erich N. Grossman,et al.  Controlled barrier modification in Nb/NbOx/Ag metal insulator metal tunnel diodes , 2002 .

[24]  Kwok K. Ng,et al.  Complete guide to semiconductor devices , 1995 .

[25]  S. Franssila,et al.  Thin Solid Films , 2009 .

[26]  Nevill Mott,et al.  Conduction in non-crystalline materials , 1989 .

[27]  Akira Shimokohbe,et al.  Fabrication of thin film metallic glass and its application to microactuators , 1999, Smart Materials, Nano-, and Micro- Smart Systems.

[28]  Frank R Libsch,et al.  Ni-NiO-Ni tunnel junctions for terahertz and infrared detection. , 2005, Applied optics.