Topological control for min-max free boundary minimal surfaces

We establish general bounds on the topology of free boundary minimal surfaces obtained via min-max methods in compact, three-dimensional ambient manifolds with mean convex boundary. We prove that the first Betti number is lower semicontinuous along min-max sequences converging in the sense of varifolds to free boundary minimal surfaces. In the orientable case, we obtain an even stronger result which implies that if the number of boundary components increases in the varifold limit, then the genus decreases at least as much. We also present several compelling applications, such as the variational construction of a free boundary minimal trinoid in the Euclidean unit ball.

[1]  Jiahua Zou,et al.  On the Areas of Genus Zero Free Boundary Minimal Surfaces Embedded in the Unit $3$-ball , 2023, 2301.01892.

[2]  Giada Franz Contributions to the theory of free boundary minimal surfaces , 2022, 2208.12188.

[3]  A. Chu A Free Boundary Minimal Surface via a 6-Sweepout , 2022, The Journal of Geometric Analysis.

[4]  Mario B. Schulz,et al.  Infinitely many pairs of free boundary minimal surfaces with the same topology and symmetry group , 2022, 2205.04861.

[5]  Nikolaos Kapouleas,et al.  Free Boundary Minimal surfaces in the Euclidean Three-Ball close to the boundary , 2021, 2111.11308.

[6]  Reto Buzano,et al.  Noncompact self-shrinkers for mean curvature flow with arbitrary genus , 2021, 2110.06027.

[7]  Giada Franz,et al.  Equivariant index bound for min–max free boundary minimal surfaces , 2021, Calculus of Variations and Partial Differential Equations.

[8]  R. Kusner,et al.  On Steklov Eigenspaces for Free Boundary Minimal Surfaces in the Unit Ball , 2020, 2011.06884.

[9]  Alexandre Girouard,et al.  Large Steklov eigenvalues via homogenisation on manifolds , 2020, Inventiones mathematicae.

[10]  Mario B. Schulz,et al.  Free boundary minimal surfaces with connected boundary and arbitrary genus , 2020, Cambridge Journal of Mathematics.

[11]  Peter J. McGrath,et al.  Generalizing the Linearized Doubling approach, I: General theory and new minimal surfaces and self-shrinkers , 2023, Cambridge Journal of Mathematics.

[12]  Nicolaos Kapouleas,et al.  Free boundary minimal surfaces with connected boundary in the $3$-ball by tripling the equatorial disc , 2017, Journal of Differential Geometry.

[13]  M. Li,et al.  Free boundary minimal surfaces in the unit three-ball via desingularization of the critical catenoid and the equatorial disc , 2017, 1709.08556.

[14]  Daniel Ketover Free boundary minimal surfaces of unbounded genus , 2016, 1612.08691.

[15]  Xin Zhou,et al.  Curvature estimates for stable free boundary minimal hypersurfaces , 2016, Journal für die reine und angewandte Mathematik (Crelles Journal).

[16]  B. Devyver,et al.  Index of the critical catenoid , 2016, 1609.02315.

[17]  B. White Introduction to minimal surface theory , 2016 .

[18]  Peter J. McGrath A Characterization of the Critical Catenoid , 2016, 1603.04114.

[19]  F. C. Marques,et al.  The catenoid estimate and its geometric applications , 2016, Journal of Differential Geometry.

[20]  O. Chodosh,et al.  Minimal hypersurfaces with bounded index , 2015, 1509.06724.

[21]  F. Pacard,et al.  Free boundary minimal surfaces in the unit 3-ball , 2015, 1502.06812.

[22]  Daniel Ketover Genus bounds for min-max minimal surfaces , 2013, Journal of differential geometry.

[23]  Fernando C. Marques,et al.  Existence of infinitely many minimal hypersurfaces in positive Ricci curvature , 2013, Inventiones mathematicae.

[24]  I. Polterovich,et al.  Multiplicity bounds for Steklov eigenvalues on Riemannian surfaces , 2012, 1209.4869.

[25]  R. Schoen,et al.  Sharp eigenvalue bounds and minimal surfaces in the ball , 2012, 1209.3789.

[26]  M. Li A General Existence Theorem for Embedded Minimal Surfaces with Free Boundary , 2012, 1204.2883.

[27]  Fernando C. Marques,et al.  Min-Max theory and the Willmore conjecture , 2012, 1202.6036.

[28]  Richard Schoen,et al.  The first Steklov eigenvalue, conformal geometry, and minimal surfaces , 2009, 0912.5392.

[29]  Camillo De Lellis,et al.  Genus bounds for minimal surfaces arising from min-max constructions , 2009, 0905.4035.

[30]  Viktor Blåsjö,et al.  The Isoperimetric Problem , 2005, Am. Math. Mon..

[31]  Camillo De Lellis,et al.  The min--max construction of minimal surfaces , 2003, math/0303305.

[32]  J. Jost,et al.  On embedded minimal disks in convex bodies , 1986 .

[33]  Johannes C. C. Nitsche,et al.  Stationary partitioning of convex bodies , 1985 .

[34]  F. Smith On the existence of embedded minimal 2-spheres in the 3-sphere, endowed with an arbitrary metric , 1983, Bulletin of the Australian Mathematical Society.

[35]  T. Willmore EXISTENCE AND REGULARITY OF MINIMAL SURFACES ON RIEMANNIAN MANIFOLDS , 1982 .

[36]  William S. Massey,et al.  Algebraic Topology: An Introduction , 1977 .

[37]  A. Fraser,et al.  A GENERAL EXISTENCE THEOREM FOR EMBEDDED MINIMAL SURFACES WITH FREE BOUNDARY , 2018 .

[38]  Michael Grüter,et al.  Allard type regularity results for varifolds with free boundaries , 1986 .

[39]  Leon Simon,et al.  Lectures on Geometric Measure Theory , 1984 .

[40]  E. Sperner,et al.  Zerlegung konvexer Körper durch minimale Trennflächen. , 1979 .

[41]  S. Lang Complex Analysis , 1977 .

[42]  R. Ho Algebraic Topology , 2022 .