Heterogeneity-induced order in globally coupled chaotic systems
暂无分享,去创建一个
Collective behavior is studied in globally coupled maps with distributed nonlinearity. It is shown that the heterogeneity enhances regularity in the collective dynamics. Low-dimensional quasi-periodic motion is often found for the mean field, even if each element shows chaotic dynamics. The mechanism of this order is due to the formation of an internal bifurcation structure, and the self-consistent dynamics between the structures and the mean field.
[1] Juergen Kurths,et al. Synchronization in a population of globally coupled chaotic oscillators , 1996 .
[2] 津田 一郎,et al. K. Kaneko: Collapse of Tori and Genesis of Chaos in Dissipative Systems, World Scientific, Singapore, 1986, 264ページ, 24×16cm, US24.00. , 1987 .
[3] John K. Tomfohr,et al. Lecture Notes on Physics , 1879, Nature.
[4] Arun V. Holden,et al. Neurocomputers and attention , 1991 .
[5] 金子 邦彦. Collapse of tori and genesis of chaos in dissipative systems , 1986 .