Low-energy electron emission at the separation of gold-platinum surfaces induced by galactic cosmic rays on board LISA Pathfinder

[1]  M. Villani,et al.  Study of Galactic Cosmic-Ray Flux Modulation by Interplanetary Plasma Structures for the Evaluation of Space Instrument Performance and Space Weather Science Investigations , 2019, Atmosphere.

[2]  A. Petiteau,et al.  Characteristics and Energy Dependence of Recurrent Galactic Cosmic-Ray Flux Depressions and of a Forbush Decrease with LISA Pathfinder , 2018, 1802.09374.

[3]  J. P. López-Zaragoza,et al.  Beyond the Required LISA Free-Fall Performance: New LISA Pathfinder Results down to 20  μHz. , 2018, Physical review letters.

[4]  J. P. López-Zaragoza,et al.  Charge-Induced Force Noise on Free-Falling Test Masses: Results from LISA Pathfinder. , 2017, Physical review letters.

[5]  J. P. López-Zaragoza,et al.  Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results. , 2016, Physical review letters.

[6]  M. A. Cortés-Giraldo,et al.  Recent developments in GEANT4 , 2015 .

[7]  C. Grimani,et al.  LISA Pathfinder test-mass charging during galactic cosmic-ray flux short-term variations , 2015 .

[8]  V. Vlachoudis,et al.  The FLUKA Code: Developments and Challenges for High Energy and Medical Applications , 2014 .

[9]  Walter Fichter,et al.  LISA Pathfinder: mission and status , 2011 .

[10]  Paul McNamara,et al.  The LISA Pathfinder Mission , 2010 .

[11]  F. Marchesoni,et al.  LISA test-mass charging process due to cosmic-ray nuclei and electrons , 2005 .

[12]  Peter Wass,et al.  Test-mass charging simulations for the LISA Pathfinder mission , 2005 .

[13]  T. Sumner,et al.  Detailed calculation of test-mass charging in the LISA mission , 2004, astro-ph/0405522.

[14]  F. Cucinotta,et al.  Radial dose distributions in the delta‐ray theory of track structure , 1996 .

[15]  G Kraft,et al.  Calculations of heavy-ion track structure , 1994 .

[16]  H. Crawford,et al.  Fragmentation of relativistic 56 Fe , 1979 .