Array of Nanopore Sensors Detect Nanoscale Biomolecules by Nucleic Acid Analysis

[1]  A. Kaushik,et al.  Using Graphene-Based Biosensors to Detect Dopamine for Efficient Parkinson’s Disease Diagnostics , 2021, Biosensors.

[2]  Yingkuan Han,et al.  Ultrasensitive, high-throughput and multiple cancer biomarkers simultaneous detection in serum based on graphene oxide quantum dots integrated microfluidic biosensing platform. , 2021, Analytica chimica acta.

[3]  Si Li,et al.  Aptamer-Gated Ion Channel for Ultrasensitive Mucin 1 Detection. , 2021, Analytical chemistry.

[4]  J. Robinson,et al.  Facile Post-deposition Annealing of Graphene Ink Enables Ultrasensitive Electrochemical Detection of Dopamine. , 2021, ACS applied materials & interfaces.

[5]  Peng Liu,et al.  A 3D electrochemical biosensor based on Super-Aligned Carbon NanoTube array for point-of-care uric acid monitoring. , 2021, Biosensors & bioelectronics.

[6]  D. Pan,et al.  Rapid and label-free optical assay of S-layer protein with high sensitivity using TiO2-coated porous silicon-based microfluidic biosensor , 2020 .

[7]  D. N. Srivastava,et al.  Fabrication of porous silicon based label-free optical biosensor for heat shock protein 70 detection , 2020 .

[8]  Ruisheng Hu,et al.  Four Aspects about Solid‐State Nanopores for Protein Sensing: Fabrication, Sensitivity, Selectivity, and Durability , 2020, Advanced healthcare materials.

[9]  Cecilia Cristea,et al.  An overview of the detection of serotonin and dopamine with graphene-based sensors. , 2020, Bioelectrochemistry.

[10]  G. Schneider,et al.  Facile and ultraclean graphene-on-glass nanopores by controlled electrochemical etching. , 2020, ACS sensors.

[11]  Lei Liu,et al.  A Novel Biosensor Based on Molybdenum Disulfide (MoS2 ) Modified Porous Anodic Aluminum Oxide Nanochannels for Ultrasensitive microRNA-155 Detection. , 2020, Small.

[12]  L. Que,et al.  Development of a structure-switching aptamer-based nanosensor for salicylic acid detection. , 2019, Biosensors & bioelectronics.

[13]  A. Meller,et al.  Plasmonic‐Nanopore Biosensors for Superior Single‐Molecule Detection , 2019, Advanced materials.

[14]  Mrinmoy De,et al.  Nano-Graphene Oxide Based Multichannel Sensor Arrays towards Sensing of Protein Mixtures. , 2019, Chemistry, an Asian journal.

[15]  Jun‐Jie Zhu,et al.  Photoelectrochemical DNA biosensor based on g-C3N4/MoS2 2D/2D heterojunction electrode matrix and co-sensitization amplification with CdSe QDs for the sensitive detection of ssDNA. , 2019, Analytica chimica acta.

[16]  P. Grutter,et al.  Nanopore Formation via Tip‐Controlled Local Breakdown Using an Atomic Force Microscope , 2019, Small Methods.

[17]  M. Drndić,et al.  Centimeter-Scale Nanoporous 2D Membranes and Ion Transport: Porous MoS2 Monolayers in a Few-Layer Matrix. , 2018, Nano letters.

[18]  Qing Zhao,et al.  Photothermally Assisted Thinning of Silicon Nitride Membranes for Ultrathin Asymmetric Nanopores. , 2018, ACS nano.

[19]  M. Mayer,et al.  Formation of Single Nanopores with Diameters of 20-50 nm in Silicon Nitride Membranes Using Laser-Assisted Controlled Breakdown. , 2018, ACS nano.

[20]  Y. Liu,et al.  Detection of PARP-1 activity based on hyperbranched-poly (ADP-ribose) polymers responsive current in artificial nanochannels. , 2018, Biosensors & bioelectronics.

[21]  Chao Song,et al.  Rapid multiplexed detection of beta-amyloid and total-tau as biomarkers for Alzheimer's disease in cerebrospinal fluid. , 2018, Nanomedicine : nanotechnology, biology, and medicine.

[22]  Tal Gilboa,et al.  Optically-Monitored Nanopore Fabrication Using a Focused Laser Beam , 2018, Scientific Reports.

[23]  L. Que,et al.  An aptamer nanopore-enabled microsensor for detection of theophylline. , 2018, Biosensors & bioelectronics.

[24]  T. Al‐Ansari,et al.  A Review of Carbon Nanomaterials’ Synthesis via the Chemical Vapor Deposition (CVD) Method , 2018, Materials.

[25]  C. Dekker,et al.  Lithography-based fabrication of nanopore arrays in freestanding SiN and graphene membranes , 2018, Nanotechnology.

[26]  Jian-hui Jiang,et al.  Nanopore biosensor for sensitive and label-free nucleic acid detection based on hybridization chain reaction amplification. , 2017, Talanta.

[27]  T. Basu,et al.  Triglyceride detection using reduced graphene oxide on ITO surface , 2017 .

[28]  Jing‐Juan Xu,et al.  Nanopore-Based Electrochemiluminescence for Detection of MicroRNAs via Duplex-Specific Nuclease-Assisted Target Recycling. , 2017, ACS applied materials & interfaces.

[29]  Yue Wu,et al.  High visible light sensitive MoS2 ultrathin nanosheets for photoelectrochemical biosensing. , 2017, Biosensors & bioelectronics.

[30]  P. Whitford,et al.  Nanopore-Based Measurements of Protein Size, Fluctuations, and Conformational Changes. , 2017, ACS nano.

[31]  Benjamin R. Watts,et al.  Manipulating Electrical and Fluidic Access in Integrated Nanopore-Microfluidic Arrays Using Microvalves. , 2017, Small.

[32]  Laura Beth Fulton,et al.  Monolayer WS2 Nanopores for DNA Translocation with Light-Adjustable Sizes. , 2017, ACS nano.

[33]  L. Genovese,et al.  Electrochemical deposition of Ag2Se nanostructures , 2017 .

[34]  G. Pazour,et al.  Ror2 signaling regulates Golgi structure and transport through IFT20 for tumor invasiveness , 2017, Scientific Reports.

[35]  Kyle Briggs,et al.  Solid-state nanopore localization by controlled breakdown of selectively thinned membranes , 2017, Nanotechnology.

[36]  T. Deng,et al.  Massive fabrication of silicon nanopore arrays with tunable shapes , 2016 .

[37]  Jingqing Liu,et al.  Bacteria detection based on its blockage effect on silicon nanopore array. , 2016, Biosensors & bioelectronics.

[38]  J. Meyer,et al.  Nanopore fabrication and characterization by helium ion microscopy , 2016, 1805.00292.

[39]  L. Que,et al.  Measurement of serum prostate cancer markers using a nanopore thin film based optofluidic chip. , 2016, Biosensors & bioelectronics.

[40]  Wei Zhao,et al.  Visual Color-Switch Electrochemiluminescence Biosensing of Cancer Cell Based on Multichannel Bipolar Electrode Chip. , 2016, Analytical chemistry.

[41]  Jianhua Hao,et al.  Ultrasensitive Detection of Ebola Virus Oligonucleotide Based on Upconversion Nanoprobe/Nanoporous Membrane System. , 2016, ACS nano.

[42]  Hong Chen,et al.  Color Tuning of Core-Shell Fluorescent Microspheres by Controlling the Conjugation of Poly(p-phenylenevinylene) Backbone. , 2015, ACS applied materials & interfaces.

[43]  K. Kececi,et al.  Nanopore detection of double stranded DNA using a track-etched polycarbonate membrane. , 2015, Talanta.

[44]  Li-Yu Daisy Liu,et al.  Electrochemical Reaction in Single Layer MoS2: Nanopores Opened Atom by Atom. , 2015, Nano letters.

[45]  J. Eijkel,et al.  Nanopore fabrication by heating Au particles on ceramic substrates. , 2015, Nano letters.

[46]  Wei-Wei Zhao,et al.  Photoelectrochemical DNA biosensors. , 2014, Chemical reviews.

[47]  M. Sailor,et al.  Synthesis and characterization of a stable, label-free optical biosensor from TiO2-coated porous silicon. , 2014, Biosensors & bioelectronics.

[48]  Hongyuan Chen,et al.  Signal-on dual-potential electrochemiluminescence based on luminol-gold bifunctional nanoparticles for telomerase detection. , 2014, Analytical chemistry.

[49]  Ke Liu,et al.  Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation. , 2014, ACS nano.

[50]  Almira Ramanaviciene,et al.  Site-directed antibody immobilization techniques for immunosensors. , 2013, Biosensors & bioelectronics.

[51]  R. Bashir,et al.  Electron beam induced local crystallization of HfO2 nanopores for biosensing applications. , 2013, Nanoscale.

[52]  K. Briggs,et al.  Nanopore Fabrication by Controlled Dielectric Breakdown , 2013, PloS one.

[53]  S. Maier,et al.  Rapid ultrasensitive single particle surface-enhanced Raman spectroscopy using metallic nanopores. , 2013, Nano letters.

[54]  Qing Zhao,et al.  Boron Nitride Nanopores: Highly Sensitive DNA Single‐Molecule Detectors , 2013, Advanced materials.

[55]  G. Sulka,et al.  Anodic growth of TiO2 nanopore arrays at various temperatures , 2013 .

[56]  D. Branton,et al.  Molecule-hugging graphene nanopores , 2013, Proceedings of the National Academy of Sciences.

[57]  Shen-ming Chen,et al.  Dopamine sensor based on a glassy carbon electrode modified with a reduced graphene oxide and palladium nanoparticles composite , 2013, Microchimica Acta.

[58]  Venumadhav Korampally,et al.  Nanomaterial processing using self-assembly-bottom-up chemical and biological approaches , 2013, Reports on progress in physics. Physical Society.

[59]  D. Fink,et al.  Label-free DNA detection using the narrow side of funnel-type etched nanopores. , 2013, Biosensors & bioelectronics.

[60]  Karine Anselme,et al.  Directing nuclear deformation on micropillared surfaces by substrate geometry and cytoskeleton organization. , 2013, Biomaterials.

[61]  T. Deng,et al.  Fabrication of Silicon Nanopore Arrays with Three-Step Wet Etching , 2013 .

[62]  Yuan He,et al.  Fluorescence detection and imaging of biomolecules using the micropatterned nanostructured aluminum oxide. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[63]  T. Deng,et al.  Fabrication of silicon nanopore arrays using a combination of dry and wet etching , 2012 .

[64]  Mubarak Ali,et al.  Thermally controlled permeation of ionic molecules through synthetic nanopores functionalized with amine-terminated polymer brushes , 2012, Nanotechnology.

[65]  Yu-Qiang Liu,et al.  One-step, multiplexed fluorescence detection of microRNAs based on duplex-specific nuclease signal amplification. , 2012, Journal of the American Chemical Society.

[66]  Jurriaan Huskens,et al.  Polymers in conventional and alternative lithography for the fabrication of nanostructures , 2011 .

[67]  T. Motooka,et al.  Semiconductor nanopores formed by chemical vapor deposition of heteroepitaxial SiC films on SOI(100) substrates , 2011 .

[68]  Q. Jiang,et al.  Pinningdepinning behavior in the wetting of (0 0 0 1) a-Al 2O 3 single crystal by molten Mg , 2011 .

[69]  M. Perego,et al.  The fabrication of tunable nanoporous oxide surfaces by block copolymer lithography and atomic layer deposition , 2011, Nanotechnology.

[70]  S. Darling,et al.  Nanoscopic Patterned Materials with Tunable Dimensions via Atomic Layer Deposition on Block Copolymers , 2010, Advanced materials.

[71]  M. Langecker,et al.  Fabrication and electrical characterization of a pore–cavity–pore device , 2010, Journal of physics. Condensed matter : an Institute of Physics journal.

[72]  Kang Wang,et al.  A nanochannel array-based electrochemical device for quantitative label-free DNA analysis. , 2010, ACS nano.

[73]  Neil Peterman,et al.  DNA translocation through graphene nanopores. , 2010, Nano letters.

[74]  A. Reina,et al.  Graphene as a sub-nanometer trans-electrode membrane , 2010, Nature.

[75]  Mukul Kumar,et al.  Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production. , 2010, Journal of nanoscience and nanotechnology.

[76]  J. Zuo,et al.  DNA Sensing Using Nanocrystalline Surface‐Enhanced Al2O3 Nanopore Sensors , 2010, Advanced functional materials.

[77]  M. Taniguchi,et al.  Fabrication of the gating nanopore device , 2009 .

[78]  Michael J Sailor,et al.  Multiplexed DNA detection using spectrally encoded porous SiO2 photonic crystal particles. , 2009, Analytical chemistry.

[79]  L. Lagae,et al.  Shrinking solid-state nanopores using electron-beam-induced deposition , 2009, Nanotechnology.

[80]  Michael J. Sailor,et al.  Real-time monitoring of enzyme activity in a mesoporous silicon double layer , 2009, Nature nanotechnology.

[81]  G. Wurtz,et al.  Fabrication and optical properties of gold nanotube arrays , 2008 .

[82]  Róbert E. Gyurcsányi,et al.  Chemically-modified nanopores for sensing , 2008 .

[83]  P. Kotula,et al.  Controlled fabrication of nanopores using a direct focused ion beam approach with back face particle detection , 2008, Nanotechnology.

[84]  S. Ikeda,et al.  Pore formation in silicon by wet etching using micrometre-sized metal particles as catalysts , 2008 .

[85]  Marianna Kemell,et al.  Exploitation of atomic layer deposition for nanostructured materials , 2007 .

[86]  Ryan J. White,et al.  Bench-top method for fabricating glass-sealed nanodisk electrodes, glass nanopore electrodes, and glass nanopore membranes of controlled size. , 2007, Analytical chemistry.

[87]  Gilles Patriarche,et al.  Sub-5nm FIB direct patterning of nanodevices , 2007 .

[88]  Hongbo Peng,et al.  Fabrication of nanopores in silicon chips using feedback chemical etching. , 2007, Small.

[89]  J. Brugger,et al.  Fabrication and functionalization of nanochannels by electron-beam-induced silicon oxide deposition. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[90]  Kornelius Nielsch,et al.  Fast fabrication of long-range ordered porous alumina membranes by hard anodization , 2006, Nature materials.

[91]  G. Whitesides,et al.  Self-assembled monolayers of thiolates on metals as a form of nanotechnology. , 2005, Chemical reviews.

[92]  D. Chatain,et al.  Morphologies Adopted by Al2O3 Single‐Crystal Surfaces in Contact with Cu Droplets , 2004 .

[93]  Peng Chen,et al.  Atomic Layer Deposition to Fine-Tune the Surface Properties and Diameters of Fabricated Nanopores. , 2004, Nano letters.

[94]  D. C. Sun,et al.  A simple method for preparation of through-hole porous anodic alumina membrane , 2004 .

[95]  Michael J. Aziz,et al.  Ion-beam sculpting at nanometre length scales , 2001, Nature.

[96]  M. Ghadiri,et al.  A porous silicon-based optical interferometric biosensor. , 1997, Science.

[97]  Kenji Fukuda,et al.  Ordered Metal Nanohole Arrays Made by a Two-Step Replication of Honeycomb Structures of Anodic Alumina , 1995, Science.

[98]  G. C. Wood,et al.  The morphology and mechanism of formation of porous anodic films on aluminium , 1970, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[99]  V. Yadava,et al.  Experimental study of Nd:YAG laser beam machining—An overview , 2008 .

[100]  P. Hawkes,et al.  Exploration of the ultimate patterning potential achievable with high resolution focused ion beams , 2005 .

[101]  A. Neudeck,et al.  In situ EPR/UV–VIS spectroelectrochemistry of polypyrrole redox cycling , 1998 .