Pervasive genetic interactions modulate neurodevelopmental defects of the autism-associated 16p11.2 deletion in Drosophila melanogaster

[1]  M. Sur,et al.  Major Vault Protein, a Candidate Gene in 16p11.2 Microdeletion Syndrome, Is Required for the Homeostatic Regulation of Visual Cortical Plasticity , 2018, The Journal of Neuroscience.

[2]  D. Lamb,et al.  16p11.2 transcription factor MAZ is a dosage-sensitive regulator of genitourinary development , 2018, Proceedings of the National Academy of Sciences.

[3]  Michelle K. Cahill,et al.  Cellular Phenotypes in Human iPSC-Derived Neurons from a Genetic Model of Autism Spectrum Disorder. , 2017, Cell reports.

[4]  Summer B. Thyme,et al.  Kctd13 deletion reduces synaptic transmission via increased RhoA , 2017, Nature.

[5]  S. Kunes,et al.  Analysis of axonal trafficking via a novel live-imaging technique reveals distinct hedgehog transport kinetics , 2017, Biology Open.

[6]  Carol Y. B. Liu,et al.  Chd8 mediates cortical neurogenesis via transcriptional regulation of cell cycle and Wnt signaling , 2016, Nature Neuroscience.

[7]  J. Robert Manak,et al.  Mutation of orthologous prickle genes causes a similar epilepsy syndrome in flies and humans , 2016, Annals of clinical and translational neurology.

[8]  Chandra L. Theesfeld,et al.  Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder , 2016, Nature Neuroscience.

[9]  S. Scherer,et al.  Chromosomal contacts connect loci associated with autism, BMI and head circumference phenotypes , 2016, Molecular Psychiatry.

[10]  D. Geschwind,et al.  Altered proliferation and networks in neural cells derived from idiopathic autistic individuals , 2016, Molecular Psychiatry.

[11]  C. Ernst Proliferation and Differentiation Deficits are a Major Convergence Point for Neurodevelopmental Disorders , 2016, Trends in Neurosciences.

[12]  Wolf-Dietrich Heyer,et al.  Autism and Cancer Share Risk Genes, Pathways, and Drug Targets. , 2016, Trends in genetics : TIG.

[13]  Bonnie Nijhof,et al.  A New Fiji-Based Algorithm That Systematically Quantifies Nine Synaptic Parameters Provides Insights into Drosophila NMJ Morphometry , 2016, PLoS Comput. Biol..

[14]  T. Mackay,et al.  Epistatic partners of neurogenic genes modulate Drosophila olfactory behavior , 2016, Genes, brain, and behavior.

[15]  G. Mardon,et al.  Quantitative Assessment of Eye Phenotypes for Functional Genetic Studies Using Drosophila melanogaster , 2016, G3: Genes, Genomes, Genetics.

[16]  C. Webber,et al.  Systematic Phenomics Analysis Deconvolutes Genes Mutated in Intellectual Disability into Biologically Coherent Modules. , 2016, American journal of human genetics.

[17]  James Y. Zou Analysis of protein-coding genetic variation in 60,706 humans , 2015, Nature.

[18]  L. Partridge,et al.  The Ras-Erk-ETS-Signaling Pathway Is a Drug Target for Longevity , 2015, Cell.

[19]  T. Mackay,et al.  Genetic architecture of natural variation in Drosophila melanogaster aggressive behavior , 2015, Proceedings of the National Academy of Sciences.

[20]  Caleb Webber,et al.  The clustering of functionally related genes contributes to CNV-mediated disease , 2015, Genome research.

[21]  Daniel S. Himmelstein,et al.  Understanding multicellular function and disease with human tissue-specific networks , 2015, Nature Genetics.

[22]  C. Webber,et al.  Synergistic Interactions between Drosophila Orthologues of Genes Spanned by De Novo Human CNVs Support Multiple-Hit Models of Autism , 2015, PLoS genetics.

[23]  Joseph Vithayathil,et al.  The 16p11.2 Deletion Mouse Model of Autism Exhibits Altered Cortical Progenitor Proliferation and Brain Cytoarchitecture Linked to the ERK MAPK Pathway , 2015, The Journal of Neuroscience.

[24]  Michael F. Wangler,et al.  Fruit Flies in Biomedical Research , 2015, Genetics.

[25]  Boris Yamrom,et al.  The contribution of de novo coding mutations to autism spectrum disorder , 2014, Nature.

[26]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[27]  K. Roeder,et al.  Transcriptional consequences of 16p11.2 deletion and duplication in mouse cortex and multiplex autism families. , 2014, American journal of human genetics.

[28]  L. Vissers,et al.  Genome sequencing identifies major causes of severe intellectual disability , 2014, Nature.

[29]  M. Meyerson,et al.  Oncogenic and sorafenib-sensitive ARAF mutations in lung adenocarcinoma. , 2014, The Journal of clinical investigation.

[30]  Björn Usadel,et al.  Trimmomatic: a flexible trimmer for Illumina sequence data , 2014, Bioinform..

[31]  C. Kyriacou,et al.  A Drosophila RNAi collection is subject to dominant phenotypic effects , 2014, Nature Methods.

[32]  E. Banks,et al.  De novo mutations in schizophrenia implicate synaptic networks , 2014, Nature.

[33]  T. Mackay Epistasis and quantitative traits: using model organisms to study gene–gene interactions , 2013, Nature Reviews Genetics.

[34]  Michael R. Johnson,et al.  De novo mutations in the classic epileptic encephalopathies , 2013, Nature.

[35]  D. Goldstein,et al.  Genic Intolerance to Functional Variation and the Interpretation of Personal Genomes , 2013, PLoS genetics.

[36]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[37]  Donna M. Martin,et al.  Phenotypic heterogeneity of genomic disorders and rare copy-number variants. , 2012, The New England journal of medicine.

[38]  Allison G. Dempsey,et al.  A 600 kb deletion syndrome at 16p11.2 leads to energy imbalance and neuropsychiatric disorders , 2012, Journal of Medical Genetics.

[39]  Kevin W Eliceiri,et al.  NIH Image to ImageJ: 25 years of image analysis , 2012, Nature Methods.

[40]  H. Sive,et al.  Zebrafish homologs of genes within 16p11.2, a genomic region associated with brain disorders, are active during brain development, and include two deletion dosage sensor genes , 2012, Disease Models & Mechanisms.

[41]  F. Pichaud,et al.  Orthodenticle and Kruppel homolog 1 regulate Drosophila photoreceptor maturation , 2012, Proceedings of the National Academy of Sciences.

[42]  K. Broadie,et al.  Drosophila modeling of heritable neurodevelopmental disorders , 2011, Current Opinion in Neurobiology.

[43]  P. Penzes,et al.  Dendritic spine pathology in neuropsychiatric disorders , 2011, Nature Neuroscience.

[44]  D. Hadjieconomou,et al.  A step-by-step guide to visual circuit assembly in Drosophila , 2011, Current Opinion in Neurobiology.

[45]  Mark J. Harris,et al.  Haploinsufficiency of the autism-associated Shank3 gene leads to deficits in synaptic function, social interaction, and social communication , 2010, Molecular autism.

[46]  E. Eichler,et al.  Phenotypic variability and genetic susceptibility to genomic disorders. , 2010, Human molecular genetics.

[47]  Gary D Bader,et al.  Functional impact of global rare copy number variation in autism spectrum disorders , 2010, Nature.

[48]  Gary D. Bader,et al.  The GeneMANIA prediction server: biological network integration for gene prioritization and predicting gene function , 2010, Nucleic Acids Res..

[49]  Ulrich Stephani,et al.  Genome-Wide Copy Number Variation in Epilepsy: Novel Susceptibility Loci in Idiopathic Generalized and Focal Epilepsies , 2010, PLoS genetics.

[50]  B. Pober Williams-Beuren syndrome. , 2010, The New England journal of medicine.

[51]  P. Elliott,et al.  A novel highly-penetrant form of obesity due to microdeletions on chromosome 16p11.2 , 2009, Nature.

[52]  Walter Kolch,et al.  Cell fate decisions are specified by the dynamic ERK interactome , 2009, Nature Cell Biology.

[53]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[54]  Takeshi Sakurai,et al.  The emerging role of synaptic cell-adhesion pathways in the pathogenesis of autism spectrum disorders , 2009, Trends in Neurosciences.

[55]  J. Schuurs-Hoeijmakers,et al.  Extending the phenotype of recurrent rearrangements of 16p11.2: deletions in mentally retarded patients without autism and in normal individuals. , 2009, European journal of medical genetics.

[56]  Wei Zhang,et al.  Pharmacological Inhibition of mTORC1 Suppresses Anatomical, Cellular, and Behavioral Abnormalities in Neural-Specific Pten Knock-Out Mice , 2009, The Journal of Neuroscience.

[57]  D. Conrad,et al.  Recurrent 16p11.2 microdeletions in autism. , 2007, Human molecular genetics.

[58]  Nancy M Bonini,et al.  Genome-Wide Screen for Modifiers of Ataxin-3 Neurodegeneration in Drosophila , 2007, PLoS genetics.

[59]  B. Dickson,et al.  A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila , 2007, Nature.

[60]  D. Kent,et al.  Roadkill attenuates Hedgehog responses through degradation of Cubitus interruptus , 2006, Development.

[61]  Seon-Young Kim,et al.  PAGE: Parametric Analysis of Gene Set Enrichment , 2005, BMC Bioinform..

[62]  K. Anderson,et al.  FKBP8 is a negative regulator of mouse sonic hedgehog signaling in neural tissues , 2004, Development.

[63]  C. Vlangos,et al.  Mutations in RAI1 associated with Smith–Magenis syndrome , 2003, Nature Genetics.

[64]  Yuh Nung Jan,et al.  Tiling of the Drosophila epidermis by multidendritic sensory neurons. , 2002, Development.

[65]  Hua He,et al.  A tumor necrosis factor α- and interleukin 6-inducible protein that interacts with the small subunit of DNA polymerase δ and proliferating cell nuclear antigen , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[66]  P. Scambler,et al.  Tbx1 haploinsufficiency in the DiGeorge syndrome region causes aortic arch defects in mice , 2001, Nature.

[67]  E. Hafen,et al.  PTEN affects cell size, cell proliferation and apoptosis during Drosophila eye development. , 1999, Development.

[68]  D. Wassarman,et al.  A fly's eye view of biology. , 1999, Trends in genetics : TIG.

[69]  Yaoguang Liu,et al.  Thermal asymmetric interlaced PCR: automatable amplification and sequencing of insert end fragments from P1 and YAC clones for chromosome walking. , 1995, Genomics.

[70]  De novo mutations in epileptic encephalopathies , 2013 .

[71]  T. P. Neufeld,et al.  A genetic screen to identify components of the sina signaling pathway in Drosophila eye development. , 1998, Genetics.