Signal transducers and activators of transcription (STAT proteins) bind to palindromic sequence elements related to interferon gamma (IFN-gamma) activation sites, which were first identified in the promoters of IFN-gamma-inducible genes. Although the sequences of the natural palindromic STAT-binding elements vary considerably, they conform to the general structure TT(N)5AA. We have systematically examined the effects of the spacing between the TT and AA core half sites on the binding of the STAT complexes activated by IFN-gamma, interleukin (IL) 6, granulocyte-macrophage colony-stimulating factor, and IL-4. We show that (i) as suggested earlier, a core palindromic TT--AA motif with a 5-bp spacing displays general STAT binding, (ii) a palindromic motif with a spacing of 4 bp selectively binds to complexes containing Stat3, and (iii) a motif with a 6-bp spacing selectively binds the STAT complexes activated by IL-4. We have examined natural elements in the promoters of cytokine-responsive genes that differ in half-site spacing and found that they display binding properties predicted from the synthetic binding sites. Furthermore, the observed differential selective binding characteristics for the most part correlate with the ability to mediate transcriptional activation of transfected test genes in response to the cytokines tested. Our results thus demonstrate that the specificity of STAT-directed transcription in response to particular cytokines or cytokine families depends in part on the spacing of half sites within the conserved response element sequence.
[1]
P. Heinrich,et al.
The signalling pathways of interleukin-6 and gamma interferon converge by the activation of different transcription factors which bind to common responsive DNA elements
,
1994,
Molecular and cellular biology.
[2]
C. Carlberg.
RXR-independent action of the receptors for thyroid hormone, retinoid acid and vitamin D on inverted palindromes.
,
1993,
Biochemical and biophysical research communications.
[3]
J. Darnell,et al.
The genomic structure of the murine ICSBP gene reveals the presence of the gamma interferon-responsive element, to which an ISGF3 alpha subunit (or similar) molecule binds
,
1993,
Molecular and cellular biology.
[4]
T. Hirano,et al.
Identification of a novel interleukin-6 response element containing an Ets-binding site and a CRE-like site in the junB promoter
,
1993,
Molecular and cellular biology.
[5]
P. Heinrich,et al.
Acute-phase response factor, a nuclear factor binding to acute-phase response elements, is rapidly activated by interleukin-6 at the posttranslational level
,
1993,
Molecular and cellular biology.