Identification and quantification of protein posttranslational modifications.

[1]  Neil L. Kelleher,et al.  Top-down proteomics reveals novel protein forms expressed in methanosarcina acetivorans , 2009, Journal of the American Society for Mass Spectrometry.

[2]  Ying Ge,et al.  Top-down high-resolution mass spectrometry of cardiac myosin binding protein C revealed that truncation alters protein phosphorylation state , 2009, Proceedings of the National Academy of Sciences.

[3]  J. Griffiths,et al.  A sensitive mass spectrometric method for hypothesis-driven detection of peptide post-translational modifications: multiple reaction monitoring-initiated detection and sequencing (MIDAS) , 2009, Nature Protocols.

[4]  G. Damonte,et al.  Top-down proteomics with a quadrupole time-of-flight mass spectrometer and collision-induced dissociation. , 2009, Rapid communications in mass spectrometry : RCM.

[5]  Alexey I Nesvizhskii,et al.  Comparison of MS(2)-only, MSA, and MS(2)/MS(3) methodologies for phosphopeptide identification. , 2009, Journal of proteome research.

[6]  S. Gygi,et al.  Mass Spectrometric Analysis of Type 1 Inositol 1,4,5-Trisphosphate Receptor Ubiquitination* , 2008, Journal of Biological Chemistry.

[7]  Peter R Baker,et al.  In-depth Analysis of Tandem Mass Spectrometry Data from Disparate Instrument Types*S , 2008, Molecular & Cellular Proteomics.

[8]  T. Issad,et al.  O-GlcNAc modification of transcription factors, glucose sensing and glucotoxicity , 2008, Trends in Endocrinology & Metabolism.

[9]  M. Mann,et al.  Precision proteomics: The case for high resolution and high mass accuracy , 2008, Proceedings of the National Academy of Sciences.

[10]  G. McAlister,et al.  Decision tree–driven tandem mass spectrometry for shotgun proteomics , 2008, Nature Methods.

[11]  M. Mann,et al.  Quantitative phosphoproteome analysis of a mouse liver cell line reveals specificity of phosphatase inhibitors , 2008, Proteomics.

[12]  R. Aebersold,et al.  Selected reaction monitoring for quantitative proteomics: a tutorial , 2008, Molecular systems biology.

[13]  M. Mann,et al.  The Ser/Thr/Tyr phosphoproteome of Lactococcus lactis IL1403 reveals multiply phosphorylated proteins , 2008, Proteomics.

[14]  Bernhard Kuster,et al.  Robust and Sensitive iTRAQ Quantification on an LTQ Orbitrap Mass Spectrometer*S , 2008, Molecular & Cellular Proteomics.

[15]  E. Seto,et al.  Lysine acetylation: codified crosstalk with other posttranslational modifications. , 2008, Molecular cell.

[16]  F. White Quantitative phosphoproteomic analysis of signaling network dynamics. , 2008, Current opinion in biotechnology.

[17]  Gennaro Marino,et al.  Identification of free phosphopeptides in different biological fluids by a mass spectrometry approach , 2008, Analytical and bioanalytical chemistry.

[18]  G. McAlister,et al.  A proteomics grade electron transfer dissociation-enabled hybrid linear ion trap-orbitrap mass spectrometer. , 2008, Journal of proteome research.

[19]  David C. Muddiman,et al.  Top-down identification and quantification of stable isotope labeled proteins from Aspergillus flavus using online nano-flow reversed-phase liquid chromatography coupled to a LTQ-FTICR mass spectrometer. , 2008, Analytical chemistry.

[20]  Ivan Dikic,et al.  Atypical ubiquitin chains: new molecular signals , 2008, EMBO reports.

[21]  Soo Jae Lee,et al.  Nitrosative protein tyrosine modifications: biochemistry and functional significance. , 2008, BMB reports.

[22]  John D. Venable,et al.  Improving protein identification sensitivity by combining MS and MS/MS information for shotgun proteomics using LTQ-Orbitrap high mass accuracy data. , 2008, Analytical chemistry.

[23]  C. Boyault,et al.  Regulation of protein turnover by acetyltransferases and deacetylases. , 2008, Biochimie.

[24]  Markus Müller,et al.  Quantitative Proteomic Analysis of Protein Complexes , 2008, Molecular & Cellular Proteomics.

[25]  B. Cargile,et al.  Automated proteomics of E. coli via top-down electron-transfer dissociation mass spectrometry. , 2008, Analytical chemistry.

[26]  J. S. Godde,et al.  Cracking the enigmatic linker histone code. , 2007, Journal of biochemistry.

[27]  Kristie L. Rose,et al.  Analysis of proteins and peptides on a chromatographic timescale by electron‐transfer dissociation MS , 2007, The FEBS journal.

[28]  J. Sirard,et al.  Nod-Like Receptors: Cytosolic Watchdogs for Immunity against Pathogens , 2007, PLoS pathogens.

[29]  L. F. Waanders,et al.  Top-down quantitation and characterization of SILAC-labeled proteins , 2007, Journal of the American Society for Mass Spectrometry.

[30]  N. Kelleher,et al.  Top-down proteomics on a chromatographic time scale using linear ion trap fourier transform hybrid mass spectrometers. , 2007, Analytical chemistry.

[31]  G. McAlister,et al.  Performance Characteristics of Electron Transfer Dissociation Mass Spectrometry*S , 2007, Molecular & Cellular Proteomics.

[32]  N. Kelleher,et al.  Decoding protein modifications using top-down mass spectrometry , 2007, Nature Methods.

[33]  K. Resing,et al.  Mapping protein post-translational modifications with mass spectrometry , 2007, Nature Methods.

[34]  Timothy J Griffin,et al.  iTRAQ reagent-based quantitative proteomic analysis on a linear ion trap mass spectrometer. , 2007, Journal of proteome research.

[35]  Jens M. Rick,et al.  Quantitative mass spectrometry in proteomics: a critical review , 2007, Analytical and bioanalytical chemistry.

[36]  O. Jensen,et al.  Functional proteomics in histone research and epigenetics , 2007, Expert review of proteomics.

[37]  A. Strasser,et al.  How important are post-translational modifications in p53 for selectivity in target-gene transcription and tumour suppression? , 2007, Cell Death and Differentiation.

[38]  Daniel López-Ferrer,et al.  Improved Method for Differential Expression Proteomics Using Trypsin-catalyzed 18O Labeling with a Correction for Labeling Efficiency *S , 2007, Molecular & Cellular Proteomics.

[39]  J. Yates,et al.  Optimizing TiO2-based phosphopeptide enrichment for automated multidimensional liquid chromatography coupled to tandem mass spectrometry. , 2007, Analytical chemistry.

[40]  S. Berger The complex language of chromatin regulation during transcription , 2007, Nature.

[41]  G. McAlister,et al.  Implementation of electron-transfer dissociation on a hybrid linear ion trap-orbitrap mass spectrometer. , 2007, Analytical chemistry.

[42]  P. Hoffmann,et al.  Enrichment of multiphosphorylated peptides by immobilized metal affinity chromatography using Ga(III)- and Fe(III)-complexes. , 2007, Protein and peptide letters.

[43]  D. Lauffenburger,et al.  Multiple reaction monitoring for robust quantitative proteomic analysis of cellular signaling networks , 2007, Proceedings of the National Academy of Sciences.

[44]  Ruedi Aebersold,et al.  Reproducible isolation of distinct, overlapping segments of the phosphoproteome , 2007, Nature Methods.

[45]  Yuan Tian,et al.  Solid-phase extraction of N-linked glycopeptides , 2007, Nature Protocols.

[46]  Benjamin A Garcia,et al.  Characterization of histones and their post-translational modifications by mass spectrometry. , 2007, Current opinion in chemical biology.

[47]  G. McAlister,et al.  Supplemental activation method for high-efficiency electron-transfer dissociation of doubly protonated peptide precursors. , 2007, Analytical chemistry.

[48]  C. Walsh,et al.  Apoptotic signal transduction and T cell tolerance , 2007, Autoimmunity.

[49]  I. Chang,et al.  Mass spectrometry‐based proteomic analysis of the epitope‐tag affinity purified protein complexes in eukaryotes , 2006, Proteomics.

[50]  B. Ueberheide,et al.  The utility of ETD mass spectrometry in proteomic analysis. , 2006, Biochimica et biophysica acta.

[51]  M. Mann,et al.  Global, In Vivo, and Site-Specific Phosphorylation Dynamics in Signaling Networks , 2006, Cell.

[52]  M. Larsen,et al.  Highly selective enrichment of phosphorylated peptides using titanium dioxide , 2006, Nature Protocols.

[53]  M. Huddleston,et al.  A Quantitative Results-driven Approach to Analyzing Multisite Protein Phosphorylation , 2006, Molecular & Cellular Proteomics.

[54]  Nasir-ud-din,et al.  Phosphorylation and glycosylation interplay: Protein modifications at hydroxy amino acids and prediction of signaling functions of the human β3 integrin family , 2006, Journal of cellular biochemistry.

[55]  A. Makarov,et al.  Orbitrap Mass Analyzer – Overview and Applications in Proteomics , 2006, Proteomics.

[56]  D. Kassel,et al.  Phosphopeptides enrichment using on-line two-dimensional strong cation exchange followed by reversed-phase liquid chromatography/mass spectrometry. , 2006, Analytical biochemistry.

[57]  Brian Raught,et al.  Automated identification of SUMOylation sites using mass spectrometry and SUMmOn pattern recognition software , 2006, Nature Methods.

[58]  Brendan K Faherty,et al.  Optimization and Use of Peptide Mass Measurement Accuracy in Shotgun Proteomics*S , 2006, Molecular & Cellular Proteomics.

[59]  L. F. Waanders,et al.  Top-down Protein Sequencing and MS3 on a Hybrid Linear Quadrupole Ion Trap-Orbitrap Mass Spectrometer*S , 2006, Molecular & Cellular Proteomics.

[60]  Pierre Baldi,et al.  A Tandem Affinity Tag for Two-step Purification under Fully Denaturing Conditions , 2006, Molecular & Cellular Proteomics.

[61]  A. Makarov,et al.  Performance evaluation of a hybrid linear ion trap/orbitrap mass spectrometer. , 2006, Analytical chemistry.

[62]  B. Williamson,et al.  Automated Identification and Quantification of Protein Phosphorylation Sites by LC/MS on a Hybrid Triple Quadrupole Linear Ion Trap Mass Spectrometer* , 2006, Molecular & Cellular Proteomics.

[63]  C. Kahn,et al.  Critical nodes in signalling pathways: insights into insulin action , 2006, Nature Reviews Molecular Cell Biology.

[64]  N. Kelleher,et al.  Top-down approaches for measuring expression ratios of intact yeast proteins using Fourier transform mass spectrometry. , 2006, Analytical chemistry.

[65]  N. Kelleher,et al.  Gene-specific characterization of human histone H2B by electron capture dissociation. , 2006, Journal of proteome research.

[66]  Hanno Steen,et al.  Phosphorylation Analysis by Mass Spectrometry , 2006, Molecular & Cellular Proteomics.

[67]  M. Washburn,et al.  Quantitation in Proteomic Experiments Utilizing Mass Spectrometry , 2006, Biotechnology & genetic engineering reviews.

[68]  E. Seto,et al.  Acetylation and deacetylation of non-histone proteins. , 2005, Gene.

[69]  Richard D. LeDuc,et al.  New and automated MSn approaches for top-down identification of modified proteins , 2005, Journal of the American Society for Mass Spectrometry.

[70]  M. Mann,et al.  Mass spectrometry–based proteomics turns quantitative , 2005, Nature chemical biology.

[71]  K. Resing,et al.  Comparison of Label-free Methods for Quantifying Human Proteins by Shotgun Proteomics*S , 2005, Molecular & Cellular Proteomics.

[72]  M. Miyagi,et al.  Peptidyl-Lys Metalloendopeptidase-catalyzed 18O Labeling for Comparative Proteomics , 2005, Molecular & Cellular Proteomics.

[73]  D. Lauffenburger,et al.  Time-resolved Mass Spectrometry of Tyrosine Phosphorylation Sites in the Epidermal Growth Factor Receptor Signaling Network Reveals Dynamic Modules*S , 2005, Molecular & Cellular Proteomics.

[74]  George C Tseng,et al.  Statistical characterization of the charge state and residue dependence of low-energy CID peptide dissociation patterns. , 2005, Analytical chemistry.

[75]  J. Griffiths,et al.  Multiple Reaction Monitoring to Identify Sites of Protein Phosphorylation with High Sensitivity *S , 2005, Molecular & Cellular Proteomics.

[76]  Steven P. Gygi,et al.  Weighing in on ubiquitin: the expanding role of mass-spectrometry-based proteomics , 2005, Nature Cell Biology.

[77]  Ruedi Aebersold,et al.  Quantitative phosphoproteome analysis using a dendrimer conjugation chemistry and tandem mass spectrometry , 2005, Nature Methods.

[78]  C. Allis,et al.  RNA meets chromatin. , 2005, Genes & development.

[79]  Beatrix Ueberheide,et al.  Protein identification using sequential ion/ion reactions and tandem mass spectrometry. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[80]  P. Roepstorff,et al.  Highly Selective Enrichment of Phosphorylated Peptides from Peptide Mixtures Using Titanium Dioxide Microcolumns* , 2005, Molecular & Cellular Proteomics.

[81]  Sean L Seymour,et al.  Discovering known and unanticipated protein modifications using MS/MS database searching. , 2005, Analytical chemistry.

[82]  W. Hancock,et al.  Monitoring glycosylation pattern changes of glycoproteins using multi-lectin affinity chromatography. , 2005, Journal of chromatography. A.

[83]  Benjamin A Garcia,et al.  Analysis of protein phosphorylation by mass spectrometry. , 2005, Methods.

[84]  Scott A McLuckey,et al.  Electron transfer ion/ion reactions in a three-dimensional quadrupole ion trap: reactions of doubly and triply protonated peptides with SO2*-. , 2005, Analytical chemistry.

[85]  M. Mann,et al.  Quantitative Phosphoproteomics Applied to the Yeast Pheromone Signaling Pathway*S , 2005, Molecular & Cellular Proteomics.

[86]  D. Liebler,et al.  P-Mod: an algorithm and software to map modifications to peptide sequences using tandem MS data. , 2005, Journal of proteome research.

[87]  Steven P Gygi,et al.  Proteomic insights into ubiquitin and ubiquitin-like proteins. , 2005, Current opinion in chemical biology.

[88]  J. Rush,et al.  Immunoaffinity profiling of tyrosine phosphorylation in cancer cells , 2005, Nature Biotechnology.

[89]  Xianquan Zhan,et al.  The human pituitary nitroproteome: detection of nitrotyrosyl-proteins with two-dimensional Western blotting, and amino acid sequence determination with mass spectrometry. , 2004, Biochemical and biophysical research communications.

[90]  K. Parker,et al.  Multiplexed Protein Quantitation in Saccharomyces cerevisiae Using Amine-reactive Isobaric Tagging Reagents*S , 2004, Molecular & Cellular Proteomics.

[91]  D. Fushman,et al.  Polyubiquitin chains: polymeric protein signals. , 2004, Current opinion in chemical biology.

[92]  R. Geyer,et al.  An optimized protocol for nano-LC-MALDI-TOF-MS coupling for the analysis of proteolytic digests of glycoproteins. , 2004, Biomedical chromatography : BMC.

[93]  K. Wells,et al.  Global shifts in protein sumoylation in response to electrophile and oxidative stress. , 2004, Chemical research in toxicology.

[94]  M. Mann,et al.  Identifying and quantifying in vivo methylation sites by heavy methyl SILAC , 2004, Nature Methods.

[95]  Wayne F. Patton,et al.  Multiplexed fluorescence detection of phosphorylation, glycosylation, and total protein in the proteomic analysis of breast cancer refractoriness , 2004, Proteomics.

[96]  W. Hancock,et al.  A new and sensitive on-line liquid chromatography/mass spectrometric approach for top-down protein analysis: the comprehensive analysis of human growth hormone in an E. coli lysate using a hybrid linear ion trap/Fourier transform ion cyclotron resonance mass spectrometer. , 2004, Rapid communications in mass spectrometry : RCM.

[97]  M. Mann,et al.  Improved peptide identification in proteomics by two consecutive stages of mass spectrometric fragmentation. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[98]  Steven P Gygi,et al.  Large-scale characterization of HeLa cell nuclear phosphoproteins. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[99]  M. Mann,et al.  Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics , 2004, Nature Biotechnology.

[100]  Wayne F. Patton,et al.  Characterization of dynamic and steady‐state protein phosphorylation using a fluorescent phosphoprotein gel stain and mass spectrometry , 2004, Electrophoresis.

[101]  Kelvin H. Lee,et al.  A two‐dimensional electrophoresis map of Chinese hamster ovary cell proteins based on fluorescence staining , 2004, Electrophoresis.

[102]  J. Shabanowitz,et al.  Anion dependence in the partitioning between proton and electron transfer in ion/ion reactions , 2004 .

[103]  J. Shabanowitz,et al.  Peptide and protein sequence analysis by electron transfer dissociation mass spectrometry. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[104]  A. Heck,et al.  Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. , 2004, Analytical chemistry.

[105]  S. Fang,et al.  Ubiquitin-proteasome system , 2004, Cellular and Molecular Life Sciences CMLS.

[106]  R. Becklin,et al.  Development of an LC-MALDI method for the analysis of protein complexes , 2004, Journal of the American Society for Mass Spectrometry.

[107]  S. Grewal,et al.  Regulation of heterochromatin by histone methylation and small RNAs. , 2004, Current opinion in cell biology.

[108]  D. Creasy,et al.  Unimod: Protein modifications for mass spectrometry , 2004, Proteomics.

[109]  J. Shabanowitz,et al.  A neutral loss activation method for improved phosphopeptide sequence analysis by quadrupole ion trap mass spectrometry. , 2004, Analytical chemistry.

[110]  J. Zweier,et al.  Formation of Protein Tyrosine ortho-Semiquinone Radical and Nitrotyrosine from Cytochrome c-derived Tyrosyl Radical* , 2004, Journal of Biological Chemistry.

[111]  R. Aebersold,et al.  Design and synthesis of visible isotope-coded affinity tags for the absolute quantification of specific proteins in complex mixtures. , 2004, Bioconjugate chemistry.

[112]  Morton E Bradbury,et al.  Differentiation between peptides containing acetylated or tri‐methylated lysines by mass spectrometry: An application for determining lysine 9 acetylation and methylation of histone H3 , 2004, Proteomics.

[113]  B. Chait,et al.  Improved beta-elimination-based affinity purification strategy for enrichment of phosphopeptides. , 2003, Analytical chemistry.

[114]  F. Melchior,et al.  SUMO: ligases, isopeptidases and nuclear pores. , 2003, Trends in biochemical sciences.

[115]  R. Pauwels,et al.  Chronic obstructive pulmonary disease: molecular and cellularmechanisms , 2003, European Respiratory Journal.

[116]  Wayne F. Patton,et al.  Mapping glycosylation changes related to cancer using the Multiplexed Proteomics technology: a protein differential display approach. , 2003, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[117]  Steven P Gygi,et al.  A proteomics approach to understanding protein ubiquitination , 2003, Nature Biotechnology.

[118]  Wayne F. Patton,et al.  Analysis of Steady-state Protein Phosphorylation in Mitochondria Using a Novel Fluorescent Phosphosensor Dye* , 2003, Journal of Biological Chemistry.

[119]  Wayne F. Patton,et al.  Global quantitative phosphoprotein analysis using Multiplexed Proteomics technology , 2003, Proteomics.

[120]  Ruedi Aebersold,et al.  Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry , 2003, Nature Biotechnology.

[121]  S. Gygi,et al.  Absolute quantification of proteins and phosphoproteins from cell lysates by tandem MS , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[122]  J. Yates,et al.  A method for the comprehensive proteomic analysis of membrane proteins , 2003, Nature Biotechnology.

[123]  Andrew H. Thompson,et al.  Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. , 2003, Analytical chemistry.

[124]  Lance Wells,et al.  Mapping Sites of O-GlcNAc Modification Using Affinity Tags for Serine and Threonine Post-translational Modifications* , 2002, Molecular & Cellular Proteomics.

[125]  N. Kelleher,et al.  Processing complex mixtures of intact proteins for direct analysis by mass spectrometry. , 2002, Analytical chemistry.

[126]  A. Burlingame,et al.  Histone Acetylation and Deacetylation , 2002, Molecular & Cellular Proteomics.

[127]  John I. Clark,et al.  Shotgun identification of protein modifications from protein complexes and lens tissue , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[128]  Wayne F. Patton,et al.  Detection technologies in proteome analysis. , 2002, Journal of chromatography. B, Analytical technologies in the biomedical and life sciences.

[129]  M. Mann,et al.  Stable Isotope Labeling by Amino Acids in Cell Culture, SILAC, as a Simple and Accurate Approach to Expression Proteomics* , 2002, Molecular & Cellular Proteomics.

[130]  R. Spiro Protein glycosylation: nature, distribution, enzymatic formation, and disease implications of glycopeptide bonds. , 2002, Glycobiology.

[131]  J. Shabanowitz,et al.  Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae , 2002, Nature Biotechnology.

[132]  F. Regnier,et al.  Minimizing resolution of isotopically coded peptides in comparative proteomics. , 2002, Journal of proteome research.

[133]  K. Bennett,et al.  Phosphopeptide detection and sequencing by matrix-assisted laser desorption/ionization quadrupole time-of-flight tandem mass spectrometry. , 2002, Journal of mass spectrometry : JMS.

[134]  F. McLafferty,et al.  Top down characterization of larger proteins (45 kDa) by electron capture dissociation mass spectrometry. , 2002, Journal of the American Chemical Society.

[135]  S K Burley,et al.  Hierarchical phosphorylation of the translation inhibitor 4E-BP1. , 2001, Genes & development.

[136]  B. Chait,et al.  Analysis of phosphorylated proteins and peptides by mass spectrometry. , 2001, Current opinion in chemical biology.

[137]  P. Cohen The role of protein phosphorylation in human health and disease. The Sir Hans Krebs Medal Lecture. , 2001, European journal of biochemistry.

[138]  D. Ron,et al.  Characterization of phosphopeptides from protein digests using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry and nanoelectrospray quadrupole time-of-flight mass spectrometry. , 2001, Rapid communications in mass spectrometry : RCM.

[139]  C. Allis,et al.  Translating the Histone Code , 2001, Science.

[140]  R. Aebersold,et al.  Differential stable isotope labeling of peptides for quantitation and de novo sequence derivation. , 2001, Rapid communications in mass spectrometry : RCM.

[141]  Wayne F. Patton,et al.  Rapid and simple single nanogram detection of glycoproteins in polyacrylamide gels and on electroblots , 2001, Proteomics.

[142]  T. Hunter,et al.  Oncogenic kinase signalling , 2001, Nature.

[143]  Richard D. Smith,et al.  Phosphoprotein isotope-coded affinity tag approach for isolating and quantitating phosphopeptides in proteome-wide analyses. , 2001, Analytical chemistry.

[144]  R. Hay,et al.  SUMO-1 Conjugation in Vivo Requires Both a Consensus Modification Motif and Nuclear Targeting* , 2001, The Journal of Biological Chemistry.

[145]  B. Chait,et al.  Enrichment analysis of phosphorylated proteins as a tool for probing the phosphoproteome , 2001, Nature Biotechnology.

[146]  A. Gingras,et al.  Regulation of translation initiation by FRAP/mTOR. , 2001, Genes & development.

[147]  D. Liebler,et al.  SALSA: a pattern recognition algorithm to detect electrophile-adducted peptides by automated evaluation of CID spectra in LC-MS-MS analyses. , 2001, Analytical chemistry.

[148]  J. Yates,et al.  Large-scale analysis of the yeast proteome by multidimensional protein identification technology , 2001, Nature Biotechnology.

[149]  H. Perreault,et al.  On-membrane digestion of ?-casein for determination of phosphorylation sites by matrix-assisted laser desorption/ionization quadrupole/time-of-flight mass spectrometry , 2001 .

[150]  P. Roepstorff,et al.  Phospho‐proteomics: Evaluation of the use of enzymatic de‐phosphorylation and differential mass spectrometric peptide mass mapping for site specific phosphorylation assignment in proteins separated by gel electrophoresis , 2001, Proteomics.

[151]  F. Sherman,et al.  Nα-terminal Acetylation of Eukaryotic Proteins* , 2000, The Journal of Biological Chemistry.

[152]  N Seta,et al.  Protein glycosylation and diseases: blood and urinary oligosaccharides as markers for diagnosis and therapeutic monitoring. , 2000, Clinical chemistry.

[153]  Makarov,et al.  Electrostatic axially harmonic orbital trapping: a high-performance technique of mass analysis , 2000, Analytical chemistry.

[154]  Jennifer M. Campbell,et al.  The characteristics of peptide collision-induced dissociation using a high-performance MALDI-TOF/TOF tandem mass spectrometer. , 2000, Analytical chemistry.

[155]  C. Allis,et al.  The language of covalent histone modifications , 2000, Nature.

[156]  S. Gygi,et al.  Quantitative analysis of complex protein mixtures using isotope-coded affinity tags , 1999, Nature Biotechnology.

[157]  F. Cross,et al.  Accurate quantitation of protein expression and site-specific phosphorylation. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[158]  Peter R. Baker,et al.  Role of accurate mass measurement (+/- 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. , 1999, Analytical chemistry.

[159]  Vicki H. Wysocki,et al.  Influence of Secondary Structure on the Fragmentation of Protonated Peptides , 1999 .

[160]  F. McLafferty,et al.  Top down versus bottom up protein characterization by tandem high- resolution mass spectrometry , 1999 .

[161]  N. Anderson,et al.  Proteome and proteomics: New technologies, new concepts, and new words , 1998, Electrophoresis.

[162]  F. Melchior,et al.  Structure determination of the small ubiquitin-related modifier SUMO-1. , 1998, Journal of molecular biology.

[163]  A. Hinnebusch,et al.  Identification of phosphorylation sites in proteins separated by polyacrylamide gel electrophoresis. , 1998, Analytical chemistry.

[164]  Wei Gu,et al.  Activation of p53 Sequence-Specific DNA Binding by Acetylation of the p53 C-Terminal Domain , 1997, Cell.

[165]  Vicki H. Wysocki,et al.  Influence of Peptide Composition, Gas-Phase Basicity, and Chemical Modification on Fragmentation Efficiency: Evidence for the Mobile Proton Model , 1996 .

[166]  S. Carr,et al.  Selective detection and sequencing of phosphopeptides at the femtomole level by mass spectrometry. , 1996, Analytical biochemistry.

[167]  C. Allis,et al.  Non-random acetylation of histone H4 by a cytoplasmic histone acetyltransferase as determined by novel methodology. , 1994, The Journal of biological chemistry.

[168]  P. Cohen,et al.  On target with a new mechanism for the regulation of protein phosphorylation. , 1993, Trends in biochemical sciences.

[169]  J. Henion,et al.  Structural characterization of protein tryptic peptides via liquid chromatography/mass spectrometry and collision-induced dissociation of their doubly charged molecular ions. , 1991, Analytical chemistry.

[170]  B. Freeman,et al.  Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[171]  G. Hart,et al.  The subcellular distribution of terminal N-acetylglucosamine moieties. Localization of a novel protein-saccharide linkage, O-linked GlcNAc. , 1986, The Journal of biological chemistry.

[172]  B. Vallee,et al.  Conversion of 3-nitrotyrosine to 3-aminotyrosine in peptides and proteins. , 1967, Biochemical and biophysical research communications.

[173]  George Reid,et al.  Marking time: the dynamic role of chromatin and covalent modification in transcription. , 2009, The international journal of biochemistry & cell biology.

[174]  B. Strahl,et al.  Protein modifications in transcription elongation. , 2009, Biochimica et biophysica acta.

[175]  Y. Mechref,et al.  Glycoprotein enrichment through lectin affinity techniques. , 2008, Methods in molecular biology.

[176]  M. Miyagi,et al.  Proteolytic 18O-labeling strategies for quantitative proteomics. , 2007, Mass spectrometry reviews.

[177]  G. Glish,et al.  High amplitude short time excitation: A method to form and detect low mass product ions in a quadrupole ion trap mass spectrometer , 2006, Journal of the American Society for Mass Spectrometry.

[178]  K. Medzihradszky Characterization of protein N-glycosylation. , 2005, Methods in enzymology.

[179]  A. Schmidt,et al.  A novel strategy for quantitative proteomics using isotope‐coded protein labels , 2005, Proteomics.

[180]  W. Lennarz,et al.  Enzymatic conversion of proteins to glycoproteins. , 1977, Proceedings of the National Academy of Sciences of the United States of America.