Assessing the potential long-term increase of oceanic fossil fuel CO 2 uptake due to CO 2 -calcification feedback

Abstract. Plankton manipulation experiments exhibit a wide range of sensitivities of biogenic calcification to simulated anthropogenic acidification of the ocean, with the "lab rat" of planktic calcifiers, Emiliania huxleyi apparently not representative of calcification generally. We assess the implications of this observational uncertainty by creating an ensemble of realizations of an Earth system model that encapsulates a comparable range of uncertainty in calcification response to ocean acidification. We predict that a substantial reduction in marine carbonate production is possible in the future, with enhanced ocean CO2 sequestration across the model ensemble driving a 4–13% reduction in the year 3000 atmospheric fossil fuel CO2 burden. Concurrent changes in ocean circulation and surface temperatures in the model contribute about one third to the increase in CO2 uptake. We find that uncertainty in the predicted strength of CO2-calcification feedback seems to be dominated by the assumption as to which species of calcifier contribute most to carbonate production in the open ocean.

[1]  Olivier Aumont,et al.  The fate of pelagic CaCO 3 production in a high CO 2 ocean: a model study , 2007 .

[2]  Julia C. Hargreaves,et al.  Regulation of atmospheric CO2 by deep‐sea sediments in an Earth system model , 2007 .

[3]  Ulf Riebesell,et al.  Species‐specific responses of calcifying algae to changing seawater carbonate chemistry , 2006 .

[4]  James D. Annan,et al.  Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling , 2006 .

[5]  Kimberly K. Yates,et al.  CO 3 2− concentration and pCO 2 thresholds for calcification and dissolution on the Molokai reef flat, Hawaii , 2006 .

[6]  J. Dunne,et al.  Diagnosing the contribution of phytoplankton functional groups to the production and export of particulate organic carbon, CaCO3, and opal from global nutrient and alkalinity distributions , 2006 .

[7]  Kenneth Schneider,et al.  The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma , 2006 .

[8]  A. R. Price,et al.  Millennial timescale carbon cycle and climate change in an efficient Earth system model , 2006 .

[9]  C. L. De La Rocha,et al.  Accumulation of mineral ballast on organic aggregates , 2006 .

[10]  Robert B. Halley,et al.  Diurnal variation in rates of calcification and carbonate sediment dissolution in Florida Bay , 2006 .

[11]  Andrew J. Watson,et al.  Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models , 2005 .

[12]  E. Maier‐Reimer,et al.  Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms , 2005, Nature.

[13]  A. Oschlies,et al.  A global model of the marine ecosystem for long‐term simulations: Sensitivity to ocean mixing, buoyancy forcing, particle sinking, and dissolved organic matter cycling , 2005 .

[14]  Chris Langdon,et al.  Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment , 2005 .

[15]  B. Delille,et al.  Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi , 2005 .

[16]  Robert Marsh,et al.  Uncertainties due to transport-parameter sensitivity in an efficient 3-D ocean-climate model , 2005 .

[17]  Richard A. Feely,et al.  A global ocean carbon climatology: Results from Global Data Analysis Project (GLODAP) , 2004 .

[18]  James D. Annan,et al.  An efficient climate forecasting method using an intermediate complexity Earth System Model and the ensemble Kalman filter , 2004 .

[19]  Christoph Heinze,et al.  Simulating oceanic CaCO3 export production in the greenhouse , 2004 .

[20]  Nicolas Gruber,et al.  The Oceanic Sink for Anthropogenic CO2 , 2004, Science.

[21]  Richard A. Feely,et al.  Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans , 2004, Science.

[22]  M. Denis,et al.  Response of coccolithophorid Emiliania huxleyi to elevated partial pressure of CO2 under nitrogen limitation , 2003 .

[23]  K. Caldeira,et al.  Oceanography: Anthropogenic carbon and ocean pH , 2003, Nature.

[24]  S. Barker,et al.  The future of the carbon cycle: review, calcification response, ballast and feedback on atmospheric CO2 , 2003, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[25]  A. Ridgwell An end to the “rain ratio” reign? , 2003 .

[26]  Stéphane Blain,et al.  An ecosystem model of the global ocean including Fe, Si, P colimitations , 2003 .

[27]  Corinne Le Quéré,et al.  Dust impact on marine biota and atmospheric CO2 in glacial periods , 2003 .

[28]  Richard A. Krishfield,et al.  Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean , 2002 .

[29]  R. Schiebel Planktic foraminiferal sedimentation and the marine calcite budget , 2002 .

[30]  U. Riebesell,et al.  Effect of CO2 concentration on the PIC/POC ratio in the coccolithophore Emiliania huxleyi grown under light-limiting conditions and different daylengths. , 2002 .

[31]  P. B. Duffy,et al.  Anthropogenic carbon and ocean pH , 2001 .

[32]  Ulf Riebesell,et al.  Decreasing marine biogenic calcification: A negative feedback on rising atmospheric pCO2 , 2001 .

[33]  Judith Scott Clayton,et al.  The Future , 2001, Nature.

[34]  Ulf Riebesell,et al.  Reduced calcification of marine plankton in response to increased atmospheric CO2 , 2000, Nature.

[35]  Langdon,et al.  Geochemical consequences of increased atmospheric carbon dioxide on coral reefs , 1999, Science.

[36]  Christoph Heinze,et al.  A global oceanic sediment model for long‐term climate studies , 1999 .

[37]  David Archer,et al.  An atlas of the distribution of calcium carbonate in sediments of the deep sea , 1996 .

[38]  A. Mucci,et al.  Calcite precipitation in seawater using a constant addition technique: A new overall reaction kinetic expression , 1993 .

[39]  F. Millero,et al.  A comparison of the equilibrium constants for the dissociation of carbonic acid in seawater media , 1987 .

[40]  C. Culberson,et al.  MEASUREMENT OF THE APPARENT DISSOCIATION CONSTANTS OF CARBONIC ACID IN SEAWATER AT ATMOSPHERIC PRESSURE1 , 1973 .

[41]  Timothy P. Boyer,et al.  World ocean database 2009 , 2006 .

[42]  James D. Annan,et al.  Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter , 2005 .

[43]  S. Wakeham,et al.  A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals , 2001 .

[44]  S. Doney,et al.  An intermediate complexity marine ecosystem model for the global domain , 2001 .

[45]  R. Thunell,et al.  Coccolithophore export production in Guaymas Basin, Gulf of California: response to climate forcing , 2000 .

[46]  A. Broerse,et al.  Coccolithophore export production, species composition, and coccolith-CaCO3 fluxes in the NE Atlantic (34°N 21°W and 48°N 21°W) , 2000 .

[47]  D. Lea,et al.  Reassessing foraminiferal stable isotope geochemistry: Impact of the oceanic carbonate system (experimental results) , 1999 .

[48]  D. Archer,et al.  Geochemical consequences of increased atmospheric CO2 Coral Reefs. Science. , 1999 .