Adaptation of the validated SkinEthic Reconstructed Human Epidermis (RHE) skin corrosion test method to 0.5 cm2 tissue sample.

At its 25th meeting the ECVAM Scientific Advisory Committee (ESAC) unanimously endorsed that the SkinEthic Reconstructed Human Epidermis (RHE) model could be used for distinguishing between corrosive and non-corrosive chemicals within the context of the Organisation Economic for Co-operation and Development (OECD) test guideline, TG 431 (ESAC 16-17 November 2006). Both test method development and multi-center study were performed using 0.63 cm(2) RHE tissue samples. The purpose of the present study was to demonstrate that similar results could be obtained using the validated test method adapted to 0.5cm(2) RHE tissue samples. Test method adaptation only consisted in applying a reduced volume of test substance (40 microL instead of 50 microL for liquids and 20 microL water+20mg test substance instead of 25 microL water+25mg test substance for solids) and a reduced propan-2-ol extraction volume (1.5 mL instead of 2 mL) during the MTT reduction assay. The test method was assessed with 25 representative test substances of different chemical classes. Among the latter, the 12 OECD reference test substances (6 corrosives and 6 non-corrosives) were evaluated and showed to be similarly classified as in vivo. More generally, the SkinEthic skin corrosion test adapted to 0.5 cm(2) RHE tissue samples fully complies with the OECD performance and reproducibility requirements with the 25 test substances.

[1]  T. Mosmann Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. , 1983, Journal of immunological methods.

[2]  I Gerner,et al.  The ECVAM International Validation Study on In Vitro Tests for Skin Corrosivity. 1. Selection and Distribution of the Test Chemicals. , 1998, Toxicology in vitro : an international journal published in association with BIBRA.

[3]  M. Rosdy,et al.  Terminal epidermal differentiation of human keratinocytes grown in chemically defined medium on inert filter substrates at the air-liquid interface. , 1990, The Journal of investigative dermatology.

[4]  J. Ortonne,et al.  Production of basement membrane components by a reconstructed epidermis cultured in the absence of serum and dermal factors , 1993, The British journal of dermatology.

[5]  Nathalie Alépée,et al.  A catch-up validation study on reconstructed human epidermis (SkinEthic RHE) for full replacement of the Draize skin irritation test. , 2010, Toxicology in vitro : an international journal published in association with BIBRA.

[6]  Nathalie Alépée,et al.  Assessment of the optimized SkinEthic Reconstructed Human Epidermis (RHE) 42 bis skin irritation protocol over 39 test substances. , 2010, Toxicology in vitro : an international journal published in association with BIBRA.

[7]  Elisabeth Schmidt,et al.  Assessment of the human epidermis model SkinEthic RHE for in vitro skin corrosion testing of chemicals according to new OECD TG 431. , 2006, Toxicology in vitro : an international journal published in association with BIBRA.

[8]  M Liebsch,et al.  The ECVAM International Validation Study on In Vitro Tests for Skin Corrosivity. 2. Results and Evaluation by the Management Team. , 1998, Toxicology in vitro : an international journal published in association with BIBRA.