From high oscillation to rapid approximation I: Modified Fourier expansions
暂无分享,去创建一个
[1] Arieh Iserles,et al. From high oscillation to rapid approximation III: multivariate expansions , 2009 .
[2] P. Yip,et al. Discrete Cosine Transform: Algorithms, Advantages, Applications , 1990 .
[3] Daan Huybrechs,et al. On the Evaluation of Highly Oscillatory Integrals by Analytic Continuation , 2006, SIAM J. Numer. Anal..
[4] A. Iserles,et al. Efficient quadrature of highly oscillatory integrals using derivatives , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.
[5] Irene A. Stegun,et al. Handbook of Mathematical Functions. , 1966 .
[6] David E. Edmunds,et al. Spectral Theory and Differential Operators , 1987, Oxford Scholarship Online.
[7] Henry C. Thacher,et al. Applied and Computational Complex Analysis. , 1988 .
[8] Arieh Iserles,et al. On the numerical quadrature of highly-oscillating integrals II: Irregular oscillators , 2005 .
[9] A. Iserles. On the numerical quadrature of highly‐oscillating integrals I: Fourier transforms , 2004 .
[10] Patrick J. Roache,et al. A pseudo-spectral FFT technique for non-periodic problems , 1978 .
[11] Sheehan Olver,et al. Moment-free numerical integration of highly oscillatory functions , 2006 .
[12] Daisuke Fujiwara,et al. On a special class of pseudo-differential operators , 1967 .
[13] A. Iserles,et al. On Quadrature Methods for Highly Oscillatory Integrals and Their Implementation , 2004 .
[14] R. Young,et al. An introduction to nonharmonic Fourier series , 1980 .