From high oscillation to rapid approximation I: Modified Fourier expansions

In this paper we consider a modification of the classical Fourier expansio n, whereby in ( 1, 1) the sinnx functions are replaced by sin�(n 1 )x, n � 1. This has a number of important advantages in the approximation of analytic, nonperiodic functions. In particular, expansion coefficients decay like O n 2 � , rather than like O n 1 � . We explore theoretical features of these modified Fourier expansions, prove suitable versions of Fej´

[1]  Arieh Iserles,et al.  From high oscillation to rapid approximation III: multivariate expansions , 2009 .

[2]  P. Yip,et al.  Discrete Cosine Transform: Algorithms, Advantages, Applications , 1990 .

[3]  Daan Huybrechs,et al.  On the Evaluation of Highly Oscillatory Integrals by Analytic Continuation , 2006, SIAM J. Numer. Anal..

[4]  A. Iserles,et al.  Efficient quadrature of highly oscillatory integrals using derivatives , 2005, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[6]  David E. Edmunds,et al.  Spectral Theory and Differential Operators , 1987, Oxford Scholarship Online.

[7]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[8]  Arieh Iserles,et al.  On the numerical quadrature of highly-oscillating integrals II: Irregular oscillators , 2005 .

[9]  A. Iserles On the numerical quadrature of highly‐oscillating integrals I: Fourier transforms , 2004 .

[10]  Patrick J. Roache,et al.  A pseudo-spectral FFT technique for non-periodic problems , 1978 .

[11]  Sheehan Olver,et al.  Moment-free numerical integration of highly oscillatory functions , 2006 .

[12]  Daisuke Fujiwara,et al.  On a special class of pseudo-differential operators , 1967 .

[13]  A. Iserles,et al.  On Quadrature Methods for Highly Oscillatory Integrals and Their Implementation , 2004 .

[14]  R. Young,et al.  An introduction to nonharmonic Fourier series , 1980 .