A UNIFIED FIXED POINT THEORY OF MULTIMAPS ON TOPOLOGICAL VECTOR SPACES
暂无分享,去创建一个
[1] Sehie Park. Generalized Leray-Schauder principles for condensing admissible multifunctions , 1997 .
[2] Kok-Keong Tan,et al. Fixed points, maximal elements and equilibria of generalized games , 1997 .
[3] G. Lee,et al. On vector quasivariational inequalities , 1996 .
[4] Chi-Lin Yen,et al. KKM Property and Fixed Point Theorems , 1996 .
[5] L. Chu. On Fan's Minimax Inequality , 1996 .
[6] Nguyễn Tố Như. The fixed point property for weakly admissible compact convex sets: searching for a solution to Schauder's conjecture , 1996 .
[7] L. Górniewicz,et al. On the Schauder fixed point theorem , 1996 .
[8] Acyclic maps, minimax inequalities and fixed points , 1995 .
[9] Sehie Park,et al. Some fixed point theorems for composites of acyclic maps , 1994 .
[10] Sangho Kum,et al. A generalization of generalized quasi-variational inequalities , 1994 .
[11] Seh-Ie Park,et al. FOUNDATIONS OF THE KKM THEORY VIA COINCIDENCES OF COMPOSITES OF UPPER SEMICONTINUOUS MAPS , 1994 .
[12] M. Florenzano,et al. A Leray-Schauder type theorem for approximable maps: A simple proof , 1994 .
[13] H. Ben-el-Mechaiekh,et al. GENERAL FIXED POINT THEOREMS FOR NON-CONVEX SET-VALUED MAPS , 1991 .
[14] Marc Lassonde,et al. Fixed points for Kakutani factorizable multifunctions , 1990 .
[15] H. Ben-el-Mechaiekh. The coincidence problem for compositions of set-valued maps , 1990, Bulletin of the Australian Mathematical Society.
[16] Adam Idzik,et al. Almost fixed point theorems I , 1988 .
[17] S. Simons. Cyclical coincidences of multivalued maps , 1986 .
[18] Zdzisław Dzedzej. Fixed point index theory for a class of nonacyclic multivalued maps , 1985 .
[19] O. Arino,et al. A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations , 1984 .
[20] J. Lasry,et al. Periodic solutions of functional differential inclusions and fixed points of σ-selectionable correspondences , 1983 .
[21] O. Hadzic. Fixed point theorems in not necessarily locally convex topological vector spaces , 1982 .
[22] O. Hadzic. Some fixed point and almost fixed point theorems for multivalued mappings in topological vector spaces , 1981 .
[23] J. Girolo. The Schauder fixed-point theorem for connectivity maps , 1981 .
[24] Chung-Wei Ha,et al. Minimax and fixed point theorems , 1980 .
[25] K. Zima. On the Schauder’s fixed point theorem with respect to paranormed space , 1977 .
[26] L. Górniewicz. Homological methods in fixed-point theory of multi-valued maps , 1976 .
[27] A FIXED POINT THEOREM FOR MULTIFUNCTIONS IN A LOCALLY CONVEX SPACE , 1973 .
[28] C. Rhee. On a Class of Multivalued Mappings in Banach Spaces , 1972, Canadian Mathematical Bulletin.
[29] C. J. Himmelberg. Fixed points of compact multifunctions , 1972 .
[30] R. Nussbaum. The fixed point index for local condensing maps , 1971 .
[31] C. J. Himmelberg,et al. Fixed point theorems for condensing multifunctions , 1969 .
[32] B. N. Sadovskii. A fixed-point principle , 1967 .
[33] V. Klee. Leray-Schauder theory without local convexity , 1960 .
[34] Coincidence and some systems of inequalities , 1959 .
[35] H. H. Schaefer,et al. On nonlinear positive operators. , 1959 .
[36] Induced homology homomorphisms for set-valued maps , 1957 .
[37] K. Fan. Fixed-point and Minimax Theorems in Locally Convex Topological Linear Spaces. , 1952, Proceedings of the National Academy of Sciences of the United States of America.
[38] I. Glicksberg. A FURTHER GENERALIZATION OF THE KAKUTANI FIXED POINT THEOREM, WITH APPLICATION TO NASH EQUILIBRIUM POINTS , 1952 .
[39] Mitio Nagumo,et al. Degree of Mapping in Convex Linear Topological Spaces , 1951 .
[40] E. Begle. A FIXED POINT THEOREM , 1950 .
[41] M. Hukuhara. Sur l'existence des points invariants d'une transformation dans l'espace fonctionnel , 1950 .
[42] D. Montgomery,et al. Fixed Point Theorems for Multi-Valued Transformations , 1946 .
[43] S. Kakutani. A generalization of Brouwer’s fixed point theorem , 1941 .
[44] M. Krein,et al. On Regularly Convex Sets in the Space Conjugate to a Banach Space , 1940 .
[45] J. Schauder. Zur Theorie stetiger Abbildungen in Funktionalräumen , 1927 .
[46] O. D. Kellogg,et al. Invariant points in function space , 1922 .