A UNIFIED FIXED POINT THEORY OF MULTIMAPS ON TOPOLOGICAL VECTOR SPACES

We give general fixed point theorems for compact multimaps in the "better" admissible class defined on admissible convex subsets (in the sense of Klee) of a topological vector space not necessarily locally convex. Those theorems are used to obtain results for -condensing maps. Our new theorems subsume more than seventy known or possible particular forms, and generalize them in terms of the involving spaces and the multimaps as well. Further topics closely related to our new theorems are discussed and some related problems are given in the last section.n.

[1]  Generalized Leray-Schauder principles for condensing admissible multifunctions , 1997 .

[2]  Kok-Keong Tan,et al.  Fixed points, maximal elements and equilibria of generalized games , 1997 .

[3]  G. Lee,et al.  On vector quasivariational inequalities , 1996 .

[4]  Chi-Lin Yen,et al.  KKM Property and Fixed Point Theorems , 1996 .

[5]  L. Chu On Fan's Minimax Inequality , 1996 .

[6]  Nguyễn Tố Như The fixed point property for weakly admissible compact convex sets: searching for a solution to Schauder's conjecture , 1996 .

[7]  L. Górniewicz,et al.  On the Schauder fixed point theorem , 1996 .

[8]  Acyclic maps, minimax inequalities and fixed points , 1995 .

[9]  Sehie Park,et al.  Some fixed point theorems for composites of acyclic maps , 1994 .

[10]  Sangho Kum,et al.  A generalization of generalized quasi-variational inequalities , 1994 .

[11]  Seh-Ie Park,et al.  FOUNDATIONS OF THE KKM THEORY VIA COINCIDENCES OF COMPOSITES OF UPPER SEMICONTINUOUS MAPS , 1994 .

[12]  M. Florenzano,et al.  A Leray-Schauder type theorem for approximable maps: A simple proof , 1994 .

[13]  H. Ben-el-Mechaiekh,et al.  GENERAL FIXED POINT THEOREMS FOR NON-CONVEX SET-VALUED MAPS , 1991 .

[14]  Marc Lassonde,et al.  Fixed points for Kakutani factorizable multifunctions , 1990 .

[15]  H. Ben-el-Mechaiekh The coincidence problem for compositions of set-valued maps , 1990, Bulletin of the Australian Mathematical Society.

[16]  Adam Idzik,et al.  Almost fixed point theorems I , 1988 .

[17]  S. Simons Cyclical coincidences of multivalued maps , 1986 .

[18]  Zdzisław Dzedzej Fixed point index theory for a class of nonacyclic multivalued maps , 1985 .

[19]  O. Arino,et al.  A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations , 1984 .

[20]  J. Lasry,et al.  Periodic solutions of functional differential inclusions and fixed points of σ-selectionable correspondences , 1983 .

[21]  O. Hadzic Fixed point theorems in not necessarily locally convex topological vector spaces , 1982 .

[22]  O. Hadzic Some fixed point and almost fixed point theorems for multivalued mappings in topological vector spaces , 1981 .

[23]  J. Girolo The Schauder fixed-point theorem for connectivity maps , 1981 .

[24]  Chung-Wei Ha,et al.  Minimax and fixed point theorems , 1980 .

[25]  K. Zima On the Schauder’s fixed point theorem with respect to paranormed space , 1977 .

[26]  L. Górniewicz Homological methods in fixed-point theory of multi-valued maps , 1976 .

[27]  A FIXED POINT THEOREM FOR MULTIFUNCTIONS IN A LOCALLY CONVEX SPACE , 1973 .

[28]  C. Rhee On a Class of Multivalued Mappings in Banach Spaces , 1972, Canadian Mathematical Bulletin.

[29]  C. J. Himmelberg Fixed points of compact multifunctions , 1972 .

[30]  R. Nussbaum The fixed point index for local condensing maps , 1971 .

[31]  C. J. Himmelberg,et al.  Fixed point theorems for condensing multifunctions , 1969 .

[32]  B. N. Sadovskii A fixed-point principle , 1967 .

[33]  V. Klee Leray-Schauder theory without local convexity , 1960 .

[34]  Coincidence and some systems of inequalities , 1959 .

[35]  H. H. Schaefer,et al.  On nonlinear positive operators. , 1959 .

[36]  Induced homology homomorphisms for set-valued maps , 1957 .

[37]  K. Fan Fixed-point and Minimax Theorems in Locally Convex Topological Linear Spaces. , 1952, Proceedings of the National Academy of Sciences of the United States of America.

[38]  I. Glicksberg A FURTHER GENERALIZATION OF THE KAKUTANI FIXED POINT THEOREM, WITH APPLICATION TO NASH EQUILIBRIUM POINTS , 1952 .

[39]  Mitio Nagumo,et al.  Degree of Mapping in Convex Linear Topological Spaces , 1951 .

[40]  E. Begle A FIXED POINT THEOREM , 1950 .

[41]  M. Hukuhara Sur l'existence des points invariants d'une transformation dans l'espace fonctionnel , 1950 .

[42]  D. Montgomery,et al.  Fixed Point Theorems for Multi-Valued Transformations , 1946 .

[43]  S. Kakutani A generalization of Brouwer’s fixed point theorem , 1941 .

[44]  M. Krein,et al.  On Regularly Convex Sets in the Space Conjugate to a Banach Space , 1940 .

[45]  J. Schauder Zur Theorie stetiger Abbildungen in Funktionalräumen , 1927 .

[46]  O. D. Kellogg,et al.  Invariant points in function space , 1922 .