A model for simultaneous computation of heading and depth in the presence of rotations

When an observer moves through the world, the motions of images on the retina provide information about the direction of observer motion, or "heading", and about the relative distance to surfaces in the scene. While it is simple to compute these quantities when the observer moves in a straight line, the computation becomes substantially more difficult when the observer also undergoes a rotation. Here, we examine a model that uses operators with spatially extended, direction-tuned, center-surround receptive fields to compute heading in the presence of rotations. We show that this model can simultaneously locate edges between surfaces and provide an estimate of the change in relative depth between those surfaces. We further show that the incorporation of speed tuning in this model does not appreciably affect the results.

[1]  Simon K. Rushton,et al.  Optic Flow and Beyond , 2004 .

[2]  K. Hoffmann,et al.  Contribution of inhibitory mechanisms to direction selectivity and response normalization in macaque middle temporal area. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[3]  G. Orban,et al.  Spatial heterogeneity of inhibitory surrounds in the middle temporal visual area. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[4]  James A. Crowell,et al.  Estimating heading during eye movements , 1994, Vision Research.

[5]  J A Perrone,et al.  Model for the computation of self-motion in biological systems. , 1992, Journal of the Optical Society of America. A, Optics and image science.

[6]  K. Nakayama,et al.  Optical Velocity Patterns, Velocity-Sensitive Neurons, and Space Perception: A Hypothesis , 1974, Perception.

[7]  Eero P. Simoncelli,et al.  How MT cells analyze the motion of visual patterns , 2006, Nature Neuroscience.

[8]  Bart Krekelberg,et al.  Interactions between Speed and Contrast Tuning in the Middle Temporal Area: Implications for the Neural Code for Speed , 2006, The Journal of Neuroscience.

[9]  James A. Crowell,et al.  The perception of heading during eye movements , 1992, Nature.

[10]  J H Rieger,et al.  Processing differential image motion. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[11]  Keiji Tanaka,et al.  Integration of direction signals of image motion in the superior temporal sulcus of the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[12]  Nicholas J. Priebe,et al.  Estimating Target Speed from the Population Response in Visual Area MT , 2004, The Journal of Neuroscience.

[13]  J. Allman,et al.  Perceptions of Depth Elicited by Occluded and Shearing Motions of Random Dots , 1988, Perception.

[14]  W F Clocksin,et al.  Perception of Surface Slant and Edge Labels from Optical Flow: A Computational Approach , 1980, Perception.

[15]  Constance S. Royden,et al.  Modeling observer and object motion perception , 2004 .

[16]  J. Perrone,et al.  A model of self-motion estimation within primate extrastriate visual cortex , 1994, Vision Research.

[17]  K. Tanaka,et al.  Analysis of motion of the visual field by direction, expansion/contraction, and rotation cells clustered in the dorsal part of the medial superior temporal area of the macaque monkey. , 1989, Journal of neurophysiology.

[18]  L. Pessoa,et al.  Finding out about filling-in: a guide to perceptual completion for visual science and the philosophy of perception. , 1998, The Behavioral and brain sciences.

[19]  Paul A. Braren,et al.  Wayfinding on foot from information in retinal, not optical, flow. , 1992, Journal of experimental psychology. General.

[20]  Markus Lappe,et al.  A Neural Network for the Processing of Optic Flow from Ego-Motion in Man and Higher Mammals , 1993, Neural Computation.

[21]  D J Hannon,et al.  Eye movements and optical flow. , 1990, Journal of the Optical Society of America. A, Optics and image science.

[22]  H. C. Longuet-Higgins,et al.  The interpretation of a moving retinal image , 1980, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[23]  Constance S. Royden,et al.  Mathematical analysis of motion-opponent mechanisms used in the determination of heading and depth. , 1997, Journal of the Optical Society of America. A, Optics, image science, and vision.

[24]  R. Shapley,et al.  Suppression of neural responses to nonoptimal stimuli correlates with tuning selectivity in macaque V1. , 2002, Journal of neurophysiology.

[25]  Constance S. Royden,et al.  Computing heading in the presence of moving objects: a model that uses motion-opponent operators , 2002, Vision Research.

[26]  J Allman,et al.  Direction- and Velocity-Specific Responses from beyond the Classical Receptive Field in the Middle Temporal Visual Area (MT) , 1985, Perception.

[27]  M. Graziano,et al.  Tuning of MST neurons to spiral motions , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[28]  D C Van Essen,et al.  Functional properties of neurons in middle temporal visual area of the macaque monkey. I. Selectivity for stimulus direction, speed, and orientation. , 1983, Journal of neurophysiology.

[29]  J. H. Rieger,et al.  Human visual navigation in the presence of 3-D rotations , 1985, Biological Cybernetics.

[30]  T. Albright,et al.  Contribution of area MT to perception of three-dimensional shape: a computational study , 1996, Vision Research.

[31]  K. Prazdny,et al.  Egomotion and relative depth map from optical flow , 2004, Biological Cybernetics.

[32]  Constance S. Royden,et al.  Human heading judgments in the presence of moving objects , 1996, Perception & psychophysics.

[33]  M. Banks,et al.  Perceiving heading with different retinal regions and types of optic flow , 1993, Perception & psychophysics.

[34]  A. V. D. Berg,et al.  Robustness of perception of heading from optic flow , 1992, Vision Research.

[35]  Marc M. Van Hulle,et al.  Function of center-surround antagonism for motion in visual area MT/V5: a modeling study , 2001, Vision Research.

[36]  J. Hegdé,et al.  Second-order motion conveys depth-order information. , 2004, Journal of Vision.

[37]  Constance S. Royden,et al.  A model using MT-like motion-opponent operators explains an illusory transformation in the optic flow field , 2003, Vision Research.

[38]  G. Orban,et al.  Shape and Spatial Distribution of Receptive Fields and Antagonistic Motion Surrounds in the Middle Temporal Area (V5) of the Macaque , 1995, The European journal of neuroscience.

[39]  Christopher C. Pack,et al.  Contrast dependence of suppressive influences in cortical area MT of alert macaque. , 2005, Journal of neurophysiology.

[40]  A. V. van den Berg,et al.  Heading detection using motion templates and eye velocity gain fields , 1998, Vision Research.

[41]  B Rogers,et al.  Motion Parallax as an Independent Cue for Depth Perception , 1979, Perception.

[42]  R. Wurtz,et al.  Sensitivity of MST neurons to optic flow stimuli. I. A continuum of response selectivity to large-field stimuli. , 1991, Journal of neurophysiology.

[43]  R. Hetherington The Perception of the Visual World , 1952 .

[44]  C. Koch,et al.  The analysis of visual motion: from computational theory to neuronal mechanisms. , 1986, Annual review of neuroscience.

[45]  R. Wurtz,et al.  Response of monkey MST neurons to optic flow stimuli with shifted centers of motion , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[46]  Jan J. Koenderink,et al.  Local structure of movement parallax of the plane , 1976 .

[47]  Nicholas G. Hatsopoulos,et al.  Visual navigation with a neural network , 1991, Neural Networks.

[48]  E. Adelson,et al.  Phenomenal coherence of moving visual patterns , 1982, Nature.